Kinetics and mechanistic study of the ruthenium(III) catalyzed oxidative deamination and decarboxylation of L-valine by alkaline permanganate

2001 ◽  
Vol 79 (12) ◽  
pp. 1926-1933 ◽  
Author(s):  
Dinesh C Bilehal ◽  
Raviraj M Kulkarni ◽  
Sharanappa T Nandibewoor

The kinetics of ruthenium(III) catalyzed oxidation of L-valine by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically. The reaction between permanganate and L-valine in alkaline medium exhibits 2:1 stoichiometry (KMnO4:L-valine). The reaction shows first-order dependence on the concentration of permanganate and ruthenium(III) and less than unit-order dependence on the concentrations of L-valine and alkali. The reaction rate increases both with an increase in ionic strength and a decrease in solvent polarity of the medium. Initial addition of reaction products did not significantly affect the rate. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The activation parameters were computed with respect to the slowest step of the mechanism.Key words: oxidation, L-valine, catalysis, ruthenium(III), kinetics.


2005 ◽  
Vol 2 (1) ◽  
pp. 91-100 ◽  
Author(s):  
R. S. Shettar ◽  
M. I. Hiremath ◽  
S. T. Nandibewoor

The kinetics of ruthenium(III) catalysed oxidation of L-Proline by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically using a rapid kinetic accessory. The reaction between permanganate and L-Proline in alkaline medium exhibits 2:1 stoichiometry (KMnO4: L-Proline). The reaction shows first order dependence on [permanganate] and [ruthenium(III)] and apparent less than unit order dependence each in L-Proline and alkali concentrations. Reaction rate increases with increase in ionic strength and decrease in solvent polarity of the medium. Initial addition of reaction products did not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The activation parameters were computed with respect to the slow step of the mechanism and discussed



2004 ◽  
Vol 1 (5) ◽  
pp. 216-227 ◽  
Author(s):  
M. I. Hiremath ◽  
R. S. Shettar ◽  
S. T. Nandibewoor

The kinetics of oxidation of L-proline by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.10 mol dm-3was studied spectrophotometrically. The reaction between DPC and L-proline in alkaline medium exhibits 2:1 stoichiometry (DPC: L-Proline). The reaction is of first order in [DPC], less than unit order in [L-proline] and [alkali]. Periodate has no effect on the rate of reaction. The reaction rate increases with increase in ionic strength and decrease in solvent polarity of the medium. Effect of added products and ionic strength of the reaction medium have been investigated. The main products were identified by spot test and I.R spectra. A mechanism involving the DPC as the reactive species of the oxidant and a complex formation with L-proline has been proposed. The reaction constants involved in the different steps of mechanism are calculated. The activation parameters with respect to slow step of the mechanism are computed and discussed and thermodynamic quantities are also calculated.



2005 ◽  
Vol 2005 (3) ◽  
pp. 197-201 ◽  
Author(s):  
G.C Hiremath ◽  
R.M Mulla ◽  
S.T Nandibewoor

The kinetics of oxidation of isonicotinate ion by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.60 mol dm−3 was studied spectrophotometrically. A mechanism involving the formation of an intermediate complex between the diperiodatocuprate(III) as the oxidant species and isonicotinate ion is proposed. The reaction constants involved in the different steps of mechanism have been calculated. The activation parameters with respect to the slow step of the mechanism have been computed and discussed and thermodynamic quantities were also determined.



1979 ◽  
Vol 44 (12) ◽  
pp. 3588-3594 ◽  
Author(s):  
Vladislav Holba ◽  
Olga Volárová

The oxidation kinetics of cis-bis(ethylenediamine)isothiocyanonitrocobalt(III) ion with peroxodisulphate was investigated in the medium of 0.01 M-HClO4 in dependence on the ionic strength and temperature and the reaction products were identified. Extrapolated values of thermodynamic activation parameters were determined from the temperature dependence of the rate constants extrapolated to zero ionic strength. The distance of the closest approach was estimated for the reacting ions by evaluating the primary salt effect. To elucidate the mechanism, the influence of the cyclic polyether 18-crown-6 on the reaction rate was followed.



2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ahmed Fawzy ◽  
Saleh A. Ahmed ◽  
Ismail I. Althagafi ◽  
Moataz H. Morad ◽  
Khalid S. Khairou

The oxidation kinetics of fluorenone hydrazone (FH) using potassium permanganate in alkaline medium were measured at a constant ionic strength of 0.1 mol dm−3 and at 25°C using UV/VIS spectrophotometer. A first-order kinetics has been monitored in the reaction of FH with respect to [permanganate]. Less-than-unit order dependence of the reaction on [FH] and [OH−] was revealed. No pronounced effect on the reaction rate by increasing ionic strength was recorded. Intervention of free radicals was observed in the reaction. The reaction mechanism describing the kinetic results was illustrated which involves formation of 1 : 1 intermediate complex between fluorenone hydrazones and the active species of permanganate. 9H-Fluorenone as the corresponding ketone was found to be the final oxidation product of fluorenone hydrazone as confirmed by GC/MS analysis and FT-IR spectroscopy. The expression rate law for the oxidation reaction was deduced. The reaction constants and mechanism have been evaluated. The activation parameters associated with the rate-limiting step of the reaction, along with the thermodynamic quantities of the equilibrium constants, have been calculated and discussed.



2005 ◽  
Vol 2 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Timy P. Jose ◽  
Sharanappa T. Nandibewoor ◽  
Suresh M. Tuwar

The kinetics of oxidation of L-histidine by manganese(VII) in aqueous alkaline medium at a constant ionic strength of 0.05 mol dm-3was studied spectrophotometrically. The reaction between permanganate and L-histidine in alkaline medium exhibits 2:1 stoichiometry (KMnO4: L-histidine). The reaction is of first order in [KMnO4], less than unit order in [L-histidine] and [alkali]. Decrease in the dielectric constant of the medium decreases the rate of reaction. Effect of added products and ionic strength of the reaction medium have been investigated. The main products were identified by spot test and I.R. A mechanism involving the free radical has been proposed. In composite equilibrium step L-histidine binds to MnO4-species to form a complex(C). The reaction constants involved in the different steps of mechanism are evaluated. The activation parameters with respect to slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined.



2006 ◽  
Vol 3 (1) ◽  
pp. 13-24 ◽  
Author(s):  
D. C. Hiremath ◽  
C. V. Hiremath ◽  
S. T. Nandibewoor

The kinetics of oxidation of anti-pyretic drug, paracetamol by diperiodatoargentate (III) (DPA) in alkaline medium at a constant ionic strength of 0.01 mol dm-3was studied spectrophotometrically. The reaction between DPA and paracetamol in alkaline medium exhibits 1:2 stoichiometry (paracetamol: DPA). The reaction is of first order in [DPA] and has less than unit order in both [PAM] and [alkali]. A decrease in the dielectric constant of the medium increases the rate of the reaction. The effect of added products and ionic strength of the reaction medium have been investigated. The oxidation reaction in alkaline medium has been shown to proceed via a DPA- paracetamol complex, which decomposes slowly in a rate determining step followed by other fast step to give the products. The main products were identified by spot test, IR, NMR and GC-MS. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined.



2005 ◽  
Vol 2005 (1) ◽  
pp. 13-17 ◽  
Author(s):  
R.T. Mahesh ◽  
M.B. Bellakki ◽  
S.T. Nandibewoor

The kinetics of oxidation of L-proline by permanganate in alkaline medium was studied spectrophotometrically. The reaction is first order with respect to[MnO4-] and is an apparent less than unit order, each in [L-proline] and [alkali] under the experimental conditions. The reaction rate increases with increase in ionic strength and decrease in solvent polarity of the medium. Addition of reaction products has no effect on the reaction rate. A mechanism involving the formation of a complex between the oxidant and substrate has been proposed. The reaction constants involved in the mechanism were evaluated. There is a good agreement between the observed and calculated rate constants under varying experimental conditions. The activation parameters with respect to the slow step of the proposed reaction scheme were evaluated and discussed.



2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
K. Rajalakshmi ◽  
T. Ramachandramoorthy

The kinetics of oxidation of chalcones by morpholinium chlorochromate (MCC) has been studied in 55% acetic acid-water (v/v) medium. The reaction showed unit order dependence each with respect to oxidant and catalyst and fractional order with respect to substrate and H+ion. Increased ionic strength has no effect on the reaction rate. In the case of substituted chalcones, the order with respect to substrate varies depending upon the nature of the substituent present in the ring. In general, the electron withdrawing substituents retard the reaction rate while the electron releasing substituents enhance the rate of the reaction. From the kinetic data obtained, the activation parameters have been calculated and a suitable mechanism has been proposed.



1992 ◽  
Vol 57 (7) ◽  
pp. 1451-1458 ◽  
Author(s):  
Refat M. Hassan

The kinetics of oxidation of arsenic(III) by hexachloroiridate(IV) at lower acid concentrations and at constant ionic strength of 1.0 mol dm-3 have been investigated spectrophotometrically. A first-order reaction in [IrCl62-] and fractional order with respect to arsenic(III) have been observed. A kinetic evidence for the formation of an intermediate complex between the hydrolyzed arsenic(III) species and the oxidant was presented. The results showed that decreasing the [H+] is accompanied by an appreciable acceleration of the rate of oxidation. The activation parameters have been evaluated and a mechanism consistent with the kinetic results was suggested.



Sign in / Sign up

Export Citation Format

Share Document