order dependence
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
pp. 174751982110459
Author(s):  
Monirul Islam ◽  
Swarnava Singha ◽  
Anwesha Bhattacharyya ◽  
Debraj Roy

Chromic acid oxidation of d,l-mandelic acid in the presence and absence of 1,10-phenanthroline (Phen) is studied in an aqueous micellar medium under kinetic conditions, [d,l-mandelic acid] >> [Phen]T >> [Cr(VI)]T at different temperatures. From studies on the effect of temperature on the rate constant (k), the activation parameters ∆H≠ (enthalpy of activation) and ∆S≠ (entropy of activation) are evaluated by using the Eyring equation [−ln (kh/kBT) = ∆H≠/RT − ∆S≠/R]. The high value of ∆H≠ indicates that the phen-catalysed path is favoured mainly due to very high negative value of ∆S≠. The negative value of ∆S≠ and the composite rate constant kcat support the suggested cyclic transition state. Both the catalysed and uncatalysed paths show a first-order dependence on [H+], and both also show a first-order dependence on [d,l-mandelic acid]T and [Cr(VI)]T. The Phen-catalysed path is first order in [Phen]T. These observations remain unaltered in the presence of externally added surfactants. The cationic surfactant N-cetylpyridinium chloride is found to retard the rate of the reaction.


Author(s):  
Mohammad Ali Javidian ◽  
Marco Valtorta ◽  
Pooyan Jamshidi

LWF chain graphs combine directed acyclic graphs and undirected graphs. We propose a PC-like algorithm, called PC4LWF, that finds the structure of chain graphs under the faithfulness assumption to resolve the problem of scalability of the proposed algorithm by Studeny (1997). We prove that PC4LWF is order dependent, in the sense that the output can depend on the order in which the variables are given. This order dependence can be very pronounced in high-dimensional settings. We propose two modifications of the PC4LWF algorithm that remove part or all of this order dependence. Simulation results with different sample sizes, network sizes, and p-values demonstrate the competitive performance of the PC4LWF algorithms in comparison with the LCD algorithm proposed by Ma et al. (2008) in low-dimensional settings and improved performance (with regard to error measures) in high-dimensional settings.


2020 ◽  
Vol 234 (10) ◽  
pp. 1645-1659
Author(s):  
Xigang Du ◽  
Yuping Tai ◽  
Hongyu Liu ◽  
Jun Zhang ◽  
Mengfan Su ◽  
...  

AbstractHighly dispersed CuNi nanoparticles (NPs) immobilized on reduced graphene oxide (RGO) were synthesized via the simple in situ co-reduction of an aqueous solution of Copper(II) sulfate pentahydrate, nickel chloride hexahydrate, and graphene oxide (GO) by the reduction of ammonia borane (AB) at room temperature. The powder XRD, FTIR, EDS, and TEM techniques were used to charaterize the structure, size, and composition of the CuNi/RGO catalysts. The as-prepared CuNi/RGO catalysts showed excellent catalytic performance toward the hydrolysis of AB at room temperature. Compared to Cu/RGO, Ni/RGO, and the RGO-free Cu0.6Ni0.4 counterpart, the as-prepared Cu0.6Ni0.4/RGO catalysts showed much better catalytic activity. Furthermore, kinetic studies showed that the catalytic hydrolysis of AB by Cu0.6Ni0.4/RGO has zero order dependence on the AB concentration, but first order dependence on the catalyst concentration. The turnover frequency (TOF) of Cu0.6Ni0.4/RGO catalyst for the hydrolytic dehydrogenation of AB was determined to be about 20.2 mol H2 (mol Cu0.6Ni0.4/RGO)−1 min−1 at 25 °C. In addition, the activation energy (Ea) of Cu0.6Ni0.4/RGO was determined to be around 17.7 kJ mol−1, which is one of the lowest activation energy’s of the reported metal-based catalysts.


Author(s):  
Emily M. Casleton ◽  
Daniel J. Nordman ◽  
Mark S. Kaiser

2020 ◽  
Vol 17 (35) ◽  
pp. 449-461
Author(s):  
Noor Hazim Mohammed Thalji SAEED ◽  
Ahmed Majed ABBAS

The kinetics of tetrahydrofuran oxidation by sodium N-chloro-p-toluene sulfonamide in the hydrochloric acid medium was studied in this work at 308 K. The reaction rate shows a first-order dependence on [CAT] and fractional-order dependence each on [THF] and [H+]. The derivative rate law, which suitable for experimental results, is Equation 24. The first-order rate constant has been evaluated from the relationship of the plot of Log [CAT] versus Time. The variation of the ionic strength by the addition of sodium perchlorate (NaClO4) and chloride ion on the medium showed no significant effect on the reaction. The reaction rate raised with decreasing dielectric constant (D), while the addition of p-toluene sulfonamide retards the rate of reaction. The oxidation reaction of tetrahydrofuran have been studied at a different temperature, The equilibrium constants for the formation of hypochlorous acid, protonated hydrochlorous acid and protonated hydrochlorous acid–THF complex and its decomposition constant have been estimated. Also, the rate constant for the slow (rate-determining step) and the activation parameter have been calculated. A suitable mechanism for the oxidation reaction of tetrahydrofuran was proposed based on the experimental finding. The mechanism includes the reaction of active species (H2OCl) of the oxidizing agent with the tetrahydrofuran in a fast step to give the complex(X). This complex will then transformed into complex (X̅ ) in slow step then to γ-butyrolactone in another fast step.


Sign in / Sign up

Export Citation Format

Share Document