Correlation of the rates of solvolysis of acetyl chloride and α-substituted derivatives

2008 ◽  
Vol 86 (5) ◽  
pp. 359-367 ◽  
Author(s):  
Malcolm J D’Souza ◽  
Zoon Ha Ryu ◽  
Byoung-Chun Park ◽  
Dennis N Kevill

Additional specific rates of solvolysis have been determined for acetyl chloride and diphenylacetyl chloride. These are combined with literature values to carry out correlation analyses, using the extended Grunwald–Winstein equation with incorporation of literature values for solvent nucleophilicity (NT) and solvent ionizing power (YCl). Parallel analysis are carried out using literature values for the specific rates of solvolysis of trimethylacetyl chloride, chloroacetyl chloride, phenylacetyl chloride, and α-methoxy-α-trifluoromethylphenylacetyl chloride (MTPAC). Chloroacetyl chloride and MTPAC react by an addition-elimination pathway, with the addition step rate-determining, over the full range of solvents. Acetyl chloride reacts over the full range of solvents by an ionization pathway, with considerable nucleophilic solvation. The other three substrates can solvolyze with the domination of either mechanism, depending on the properties of the solvent. Reports concerning the use of product selectivity values, kinetic solvent isotope effects, and computational studies as additional probes of the mechanism of solvolysis are discussed.Key words: Grunwald-Winstein equation, acyl chlorides, mechanism of solvolysis, solvent nucleophilicity.




2021 ◽  
Vol 22 (14) ◽  
pp. 7394
Author(s):  
Kyoung Ho Park ◽  
Mi Hye Seong ◽  
Jin Burm Kyong ◽  
Dennis N. Kevill

A study was carried out on the solvolysis of 1-adamantyl chlorothioformate (1-AdSCOCl, 1) in hydroxylic solvents. The rate constants of the solvolysis of 1 were well correlated using the Grunwald–Winstein equation in all of the 20 solvents (R = 0.985). The solvolyses of 1 were analyzed as the following two competing reactions: the solvolysis ionization pathway through the intermediate (1-AdSCO)+ (carboxylium ion) stabilized by the loss of chloride ions due to nucleophilic solvation and the solvolysis–decomposition pathway through the intermediate 1-Ad+Cl− ion pairs (carbocation) with the loss of carbonyl sulfide. In addition, the rate constants (kexp) for the solvolysis of 1 were separated into k1-Ad+Cl− and k1-AdSCO+Cl− through a product study and applied to the Grunwald–Winstein equation to obtain the sensitivity (m-value) to change in solvent ionizing power. For binary hydroxylic solvents, the selectivities (S) for the formation of solvolysis products were very similar to those of the 1-adamantyl derivatives discussed previously. The kinetic solvent isotope effects (KSIEs), salt effects and activation parameters for the solvolyses of 1 were also determined. These observations are compared with those previously reported for the solvolyses of 1-adamantyl chloroformate (1-AdOCOCl, 2). The reasons for change in reaction channels are discussed in terms of the gas-phase stabilities of acylium ions calculated using Gaussian 03.



1979 ◽  
Vol 44 (24) ◽  
pp. 4221-4224 ◽  
Author(s):  
Agnieszka Modro ◽  
George H. Schmid ◽  
Keith Yates




Sign in / Sign up

Export Citation Format

Share Document