Effects of pressure and temperature on the structure of liquid acetone

1967 ◽  
Vol 45 (2) ◽  
pp. 123-130 ◽  
Author(s):  
W. A. Adams ◽  
K. J. Laidler

The compressibility of acetone has been redetermined at temperatures of 25 to 55 °C, and at pressures from atmospheric to 1 kbar. The results have been fitted to the Tait equation, and values of (∂P/∂T)V and of the internal pressure have been calculated. The heat capacity at constant volume has also been deduced as a function of pressure and temperature. The variations in these and other derived quantities have been shown to lead to conclusions about structural changes in the liquid.

1983 ◽  
Vol 48 (8) ◽  
pp. 2141-2146
Author(s):  
Věra Uchytilová ◽  
Václav Svoboda

The possibilities were verified of the proposed method for calculating the difference between constant-volume heat capacities of liquids and gases in the ideal state from known data on the volumetric behaviour and temperature dependence of heats of vaporization of pure substances.


Author(s):  
K.B. Jakupov ◽  

The inequality of the universal gas constant of the difference in the heat capacity of a gas at constant pressure with the heat capacity of a gas at a constant volume is proved. The falsifications of using the heat capacity of a gas at constant pressure, false enthalpy, Poisson adiabat, Laplace sound speed, Hugoniot adiabat, based on the use of the false equality of the universal gas constant difference in the heat capacity of a gas at constant pressure with the heat capacity of a gas at a constant volume, have been established. The dependence of pressure on temperature in an adiabatic gas with heat capacity at constant volume has been established. On the basis of the heat capacity of a gas at a constant volume, new formulas are derived: the adiabats of an ideal gas, the speed of sound, and the adiabats on a shock wave. The variability of pressure in the field of gravity is proved and it is indicated that the use of the specific coefficient of ideal gas at constant pressure in gas-dynamic formulas is pointless. It is shown that the false “basic formula of thermodynamics” implies the falseness of the equation with the specific heat capacity at constant pressure. New formulas are given for the adiabat of an ideal gas, adiabat on a shock wave, and the speed of sound, which, in principle, do not contain the coefficient of the specific heat capacity of a gas at constant pressure. It is shown that the well-known equation of heat conductivity with the gas heat capacity coefficient at constant pressure contradicts the basic energy balance equation with the gas heat capacity coefficient at constant volume.


Sign in / Sign up

Export Citation Format

Share Document