heat capacity measurements
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 44)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Sheng Li ◽  
Yichen Zhang ◽  
Hanlin Wu ◽  
Huifei Zhai ◽  
Wenhao Liu ◽  
...  

AbstractWe report a layered ternary selenide BaPt4Se6 featuring sesqui-selenide Pt2Se3 layers sandwiched by Ba atoms. The Pt2Se3 layers in this compound can be derived from the Dirac-semimetal PtSe2 phase with Se vacancies that form a honeycomb structure. This structure results in a Pt (VI) and Pt (II) mixed-valence compound with both PtSe6 octahedra and PtSe4 square net coordination configurations. Temperature-dependent electrical transport measurements suggest two distinct anomalies: a resistivity crossover, mimic to the metal-insulator (M-I) transition at ~150 K, and a resistivity plateau at temperatures below 10 K. The resistivity crossover is not associated with any structural, magnetic, or charge order modulated phase transitions. Magnetoresistivity, Hall, and heat capacity measurements concurrently suggest an existing hidden state below 5 K in this system. Angle-resolved photoemission spectroscopy measurements reveal a metallic state and no dramatic reconstruction of the electronic structure up to 200 K.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1688
Author(s):  
Sohyun Park ◽  
Anna Hartl ◽  
Denis Sheptyakov ◽  
Markus Hoelzel ◽  
Ana Arauzo

The ferri- and antiferromagnetic structures of a hureaulite-type synthetic compound, Mn2+5(PO4)2(PO3(OH))2(HOH)4, were elucidated by high-resolution neutron powder diffraction in combination with magnetic susceptibility and heat capacity measurements. At 6.17 K, the paramagnetic phase (space group: C2/c) transforms to inherit a ferrimagnetic order (magnetic space group: C2′/c′), followed at 1.86 K by an incommensurately modulated antiferromagnetic order (magnetic superspace group: P21/c.1′(α0γ)00s with the propagation vector k(0.523(2), 0, 0.055(1)). In the ferrimagnetic state, antiferromagnetic interactions are dominant for both intra and inter pentamers of Mn2+(O, HOH)6 octahedra. Differently aligned spin-canting sublattices seen in the ferrimagnetic models at 3.4, 4.5, and 6.1 K explain a weak ferromagnetism in the title compound. The observation of magnetic moments vigorously changing in a small temperature range of 6.1–1.5 K adumbrates a high complexity of interplaying structural and magnetic orders in this manganese phosphatic oxyhydroxide.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 825
Author(s):  
Mohamed Kamel ◽  
Abanoub R. N. Hanna ◽  
Cornelius Krellner ◽  
Rüdiger Klingeler ◽  
Mohamed Abdellah ◽  
...  

Since the discovery of the reversible intercalation of lithium-ion materials associated with promising electrochemical properties, lithium-containing materials have attracted attention in the research and development of effective cathode materials for lithium-ion batteries. Despite various studies on synthesis, and electrochemical properties of lithium-based materials, fairly little fundamental optical and thermodynamic studies are available in the literature. Here, we report on the structure, optical, magnetic, and thermodynamic properties of Li-excess disordered rocksalt, Li1.3Nb0.3Mn0.4O2 (LNMO) which was comprehensively studied using powder X-ray diffraction, transient absorption spectroscopy, magnetic susceptibility, and low-temperature heat capacity measurements. Charge carrier dynamics and electron–phonon coupling in LNMO were studied using ultra-fast laser spectroscopy. Magnetic susceptibility and specific heat data are consistent with the onset of long-range antiferromagnetic order at the Néel temperatures of 6.5 (1.5) K. The effective magnetic moment of LNMO is found to be 3.60 μB. The temperature dependence of the inverse magnetic susceptibility follows the Curie–Weiss law in the high-temperature region and shows negative values of the Weiss temperature 52 K (3), confirming the strong AFM interactions.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4298
Author(s):  
Václav Pokorný ◽  
Vojtěch Štejfa ◽  
Jakub Havlín ◽  
Květoslav Růžička ◽  
Michal Fulem

In an effort to establish reliable thermodynamic data for proteinogenic amino acids, heat capacities for l-histidine (CAS RN: 71-00-1), l‑phenylalanine (CAS RN: 63-91-2), l‑proline (CAS RN: 147-85-3), l‑tryptophan (CAS RN: 73-22-3), and l-tyrosine (CAS RN: 60-18-4) were measured over a wide temperature range. Prior to heat capacity measurements, thermogravimetric analysis was performed to determine the decomposition temperatures while X-ray powder diffraction (XRPD) and heat-flux differential scanning calorimetry (DSC) were used to identify the initial crystal structures and their possible transformations. Crystal heat capacities of all five amino acids were measured by Tian–Calvet calorimetry in the temperature interval from 262 to 358 K and by power compensation DSC in the temperature interval from 307 to 437 K. Experimental values determined in this work were then combined with the literature data obtained by adiabatic calorimetry. Low temperature heat capacities of l‑histidine, for which no literature data were available, were determined in this work using the relaxation (heat pulse) calorimetry from 2 K. As a result, isobaric crystal heat capacities and standard thermodynamic functions up to 430 K for all five crystalline amino acids were developed.


2021 ◽  
pp. 160411
Author(s):  
Antonio A.A.P. Silva ◽  
Marcela S. Lamoglia ◽  
Gilbert Silva ◽  
Jean-Marc Fiorani ◽  
Nicolas David ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document