Spin–lattice relaxation in liquid ethylene chloride

1970 ◽  
Vol 48 (17) ◽  
pp. 2785-2786
Author(s):  
E. Bock ◽  
G. Wollner ◽  
E. Tomchuk

The proton spin – lattice relaxation time of ethylene chloride in deuterated ethylene chloride was determined as a function of concentration and temperature over the temperature range 230 to 390 °K. It was found that the activation energy for the total spin–lattice relaxation as well as for the intra-molecular contribution to the total spin–lattice relaxation was 2.0 kcal/mole and was nearly equal to the activation energy for viscous flow, viz. 2.3 kcal/mole.






1990 ◽  
Vol 45 (2) ◽  
pp. 102-106
Author(s):  
K. Ganesan ◽  
R. Damle ◽  
J. Ramakrishna

AbstractThe proton spin-lattice relaxation time T1 (at 5.4, 10 and 15 MHz) and second moment M2 (at 9.8 MHz) have been measured in hydrazinium Perchlorate (N2H5ClO4). The temperature dependence of T, shows two minima. The low temperature T, minimum has been explained in terms of NH3 reorientation about the N-N axis while the high temperature minimum is attributed to the exchange of protons within the NH2 group (180° flip about the H - N - H bisectrix). The activation energies for NH3 and NH: motions are found to be 20.5 kJ mol-1 and 39.8 kJ mol-1 , respectively. The second moment variation with temperature shows two transitions around 120 K and 210 K and has been discussed in terms of NH3/NH2 motions.



1993 ◽  
Vol 321 ◽  
Author(s):  
T. Akai ◽  
M. Yamashita ◽  
H. Yamanaka ◽  
H. Wakabayashi

ABSTRACTThe dynamic structure of xLi2S-Ga2S3-6GeS2 (x=4 and 6) glasses has been investigated by 7Li nuclear magnetic resonance. In two samples similar values of spin-lattice relaxation time (T1) were obtained. The relaxation mechanism at 20MHz and 78MHz is therefore attributed to the local motion of lithium ions. In the glass corresponding to x=6, which shows higher conductivity, the slow motion of ions showing an activation energy of 24.3kJ/Mol has been detected by the spin-lattice relaxation time in the rotating frame (T1p). This value is comparable to the activation energy determined by the conductivity. The existence of this mode is supported by the motional narrowing of the line width which is sensitive to the motion less than 10kHz.



Sign in / Sign up

Export Citation Format

Share Document