spin lattice relaxation
Recently Published Documents


TOTAL DOCUMENTS

4617
(FIVE YEARS 110)

H-INDEX

86
(FIVE YEARS 6)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 216
Author(s):  
Danuta Kruk ◽  
Mariusz Jancelewicz ◽  
Adam Klimaszyk ◽  
Roksana Markiewicz ◽  
Zbigniew Fojud ◽  
...  

1H and 19F spin-lattice relaxation experiments have been performed for a series of ionic liquids sharing the same anion: bis(trifluoromethanesulfonyl)imide but including cations of different alkyl chain lengths: butyltriethylammonium, triethyloctylammonium, dodecyltriethylammo-nium and hexadecyltriethylammonium. The studies have been carried out in the temperature range from 383 to 108 K at the resonance frequency of 200 MHz (for 1H). A quantitative analysis of the relaxation data has revealed two dynamical processes for both kinds of ions. The dynamics have been successfully modeled in terms of the Arrhenius law. The timescales of the dynamical processes and their temperature evolution have been discussed in detail, depending on the structure of the cation.


2021 ◽  
Author(s):  
Peter Kalisvaart ◽  
Madhusudan Chaudhary, ◽  
Amit Bhattacharya ◽  
Vladimir Michaelis ◽  
Jillian Buriak

Antimony and bismuth can both alloy with up to three molar equivalents of lithium and are therefore attractive candidates for replacing graphite in Li-ion battery anodes. Li3Sb and Li3Bi have the same cubic structure (Fm3 ̅m), but the ternary Li-Sb-Bi system has not been studied. We synthesized Li3(SbxBi1-x) with different Sb mole fractions at room temperature by ball-milling. These ternary alloys all have cubic crystal structures, as determined by XRD, but show a tendency towards phase segregation for x = 0.25 and 0.50. For x = 0.25, the lattice parameter presents a clear positive deviation from Vegard’s law in XRD, while for x = 0.50, XRD reveals two phases after milling, with the Bi-rich minority phase diminishing after thermal annealing. Solid-state nuclear magnetic resonance spectroscopy provides evidence for a Sb-enriched environment around the Li atoms for Li3Sb0.25Bi0.75, and nuclear spin-lattice relaxation measurements of the binary and ternary alloy phases point to low activation energies and rapid Li ion diffusion in Li3Bi.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2724
Author(s):  
Joanna Le Thanh-Blicharz ◽  
Jacek Lewandowicz ◽  
Zuzanna Małyszek ◽  
Przemysław Łukasz Kowalczewski ◽  
Katarzyna Walkowiak ◽  
...  

Aerogels are highly porous materials that are prepared by removing water held within a hydrogel in a manner that maintains the three-dimensional structure of the gel. Recently, there has been much interest in the preparation of aerogels from biopolymers, including starch. The applicability of native starches in the food industry is partially limited; therefore, the functional properties of starch are often improved by means of physical and/or chemical modification. The aim of the work was the analysis of molecular dynamics and the transport of water in aerogels obtained from native and chemically modified potato starches of the normal and waxy variety. Chemical modification with OSA (E 1450) as well as cross-linking with adipic anhydrite and acetylation (E 1422) had no significant impact on the hydration of potato starch aerogels as well as equilibrium water activity. The introduction of chemical moieties into starch macromolecules led to the improved binding of water by the biopolymer matrix; this was especially evident in the case of waxy starch derivatives. A increase in the amylopectin-to-amylose ratio of starch used for production of aerogels resulted in a decrease of equilibrium water activity along with spin-lattice relaxation time.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012035
Author(s):  
Dinesh Uthra ◽  
M P Sharma

Abstract In this paper, we present the investigations of Electron Paramagnetic Resonance (EPR) on Mn site substituted Pr based Doped rare Earth Manganites i.e. Pr0.60Ca0.40MnO3 and Pr0.60Ca0.40Mn0.85Zn0.15O3. Changes in physical properties as lattice parameters, average valence of Mn site was observable of those manganites. X-ray diffraction pattern shows that both Pr0.60Ca0.40MnO3 and Pr0.60Ca0.40Mn0.85Zn0.15O3 have single phase and without the other secondary or impurity phase and indexed supported the Pbnm space group. The value of x in Pr0.60Ca0.40Mn1-xZnxO3 increases, the average valence V was increased except for a fixed composition, i.e. x remains unchanged, the average valence V was decreased as we go from less valency to high valency (i.e., from divalent to trivalent and from trivalent to tetravalent. The EDXS analysis of those materials shows good homogeneity, but there are experimental errors in composition. It is seen from the SEM images that is formed in different shape grains. The average grain sizes of the samples are different for Pr0.60Ca0.40MnO3 and Pr0.06Ca0.40Mn0.85Zn0.15O3 The paramagnetic resonance spectra parameters (effective g-factor, peak-to-peak line width) of Pr0.60Ca0.40MnO3 and Pr0.60Ca0.40Mn0.85Zn0.15O3.have been used to study the paramagnetic spin correlations and spin dynamics. As for Pr0.60Ca0.40MnO3 the line width becomes wider because of the contribution of small polaron jumping within the PM mechanism. However, as for Pr0.60Ca0.40Mn0.85Zn0.15O3 the broadening of EPR line-width is understood with the spin-lattice relaxation mechanism, g value decreased from 1.99 to 1.79. Therefore, the Zn dopant not solely changes the parent spin correlation in the PM regime however additionally suppresses the development of orbital ordering.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edda Winter ◽  
Philipp Seipel ◽  
Tatiana Zinkevich ◽  
Sylvio Indris ◽  
Bambar Davaasuren ◽  
...  

Abstract Various nuclear magnetic resonance (NMR) methods are combined to study the structure and dynamics of Li1.5Al0.5Ti1.5(PO4)3 (LATP) samples, which were obtained from sintering at various temperatures between 650 and 900 °C. 6Li, 27Al, and 31P magic angle spinning (MAS) NMR spectra show that LATP crystallites are better defined for higher calcination temperatures. Analysis of 7Li spin-lattice relaxation and line-shape changes indicates the existence of two species of lithium ions with clearly distinguishable jump dynamics, which can be attributed to crystalline and amorphous sample regions, respectively. An increase of the sintering temperature leads to higher fractions of the fast lithium species with respect to the slow one, but hardly affects the jump dynamics in either of the phases. Specifically, the fast and slow lithium ions show jumps in the nanoseconds regime near 300 and 700 K, respectively. The activation energy of the hopping motion in the LATP crystallites amounts to ca. 0.26 eV. 7Li field-gradient diffusometry reveals that the long-range ion migration is limited by the sample regions featuring slow transport. The high spatial resolution available from the high static field gradients of our setup allows the observation of the lithium ion diffusion inside the small (<100 nm) LATP crystallites, yielding a high self-diffusion coefficient of D = 2 × 10−12 m2/s at room temperature.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5943
Author(s):  
Marina G. Shelyapina ◽  
Oleg I. Silyukov ◽  
Elizaveta A. Andronova ◽  
Denis Y. Nefedov ◽  
Anastasiia O. Antonenko ◽  
...  

The photocatalytic activity of layered perovskite-like oxides in water splitting reaction is dependent on the hydration level and species located in the interlayer slab: simple or complex cations as well as hydrogen-bonded or non-hydrogen-bonded H2O. To study proton localization and dynamics in the HCa2Nb3O10·yH2O photocatalyst with different hydration levels (hydrated—α-form, dehydrated—γ-form, and intermediate—β-form), complementary Nuclear Magnetic Resonance (NMR) techniques were applied. 1H Magic Angle Spinning NMR evidences the presence of different proton containing species in the interlayer slab depending on the hydration level. For α-form, HCa2Nb3O10·1.6H2O, 1H MAS NMR spectra reveal H3O+. Its molecular motion parameters were determined from 1H spin-lattice relaxation time in the rotating frame (T1ρ) using the Kohlrausch-Williams-Watts (KWW) correlation function with stretching exponent β = 0.28: Ea=0.2102 eV, τ0=9.01 × 10−12 s. For the β-form, HCa2Nb3O10·0.8H2O, the only 1H NMR line is the result of an exchange between lattice and non-hydrogen-bonded water protons. T1ρ(1/T) indicates the presence of two characteristic points (224 and 176 K), at which proton dynamics change. The γ-form, HCa2Nb3O10·0.1H2O, contains bulk water and interlayer H+ in regular sites. 1H NMR spectra suggest two inequivalent cation positions. The parameters of the proton motion, found within the KWW model, are as follows: Ea=0.2178 eV, τ0=8.29 × 10−10 s.


2021 ◽  
Author(s):  
Nicholas J Sisco ◽  
Ping Wang ◽  
Ashley M Stokes ◽  
Richard D Dortch

Background: Magnetic resonance imaging (MRI) is used extensively to quantify myelin content, however computational bottlenecks remain challenging for advanced imaging techniques in clinical settings. We present a fast, open-source toolkit for processing quantitative magnetization transfer derived from selective inversion recovery (SIR) acquisitions that allows parameter map estimation, including the myelin-sensitive macromolecular pool size ratio (PSR). Significant progress has been made in reducing SIR acquisition times to improve clinically feasibility. However, parameter map estimation from the resulting data remains computationally expensive. To overcome this computational limitation, we developed a computationally efficient, open-source toolkit implemented in the Julia language. Methods: To test the accuracy of this toolkit, we simulated SIR images with varying PSR and spin-lattice relaxation time of the free water pool (R1f) over a physiologically meaningful scale from 5 to 20% and 0.5 to 1.5 s-1, respectively. Rician noise was then added, and the parameter maps were estimated using our Julia toolkit. Probability density histogram plots and Lin's concordance correlation coefficients (LCCC) were used to assess accuracy and precision of the fits to our known simulation data. To further mimic biological tissue, we generated five cross-linked bovine serum albumin (BSA) phantoms with concentrations that ranged from 1.25 to 20%. The phantoms were imaged at 3T using SIR, and data were fit to estimate PSR and R1f. Similarly, a healthy volunteer was imaged at 3T, and SIR parameter maps were estimated to demonstrate the reduced computational time for a real-world clinical example. Results: Estimated SIR parameter maps from our Julia toolkit agreed with simulated values (LCCC> 0.98). This toolkit was further validated using BSA phantoms and a whole brain scan at 3T. In both cases, SIR parameter estimates were consistent with published values using MATLAB. However, compared to earlier work using MATLAB, our Julia toolkit provided an approximate 20-fold reduction in computational time. Conclusions: Presented here, we developed a fast, open-source, toolkit for rapid and accurate SIR MRI using Julia. The reduction in computational cost should allow SIR parameters to be accessible in clinical settings.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander V. Skripov ◽  
Olga A. Babanova ◽  
Roman V. Skoryunov ◽  
Alexei V. Soloninin ◽  
Terrence J. Udovic

Abstract Polyhydroborate-based salts of lithium and sodium have attracted much recent interest as promising solid-state electrolytes for energy-related applications. A member of this family, sodium dicarba-nido-undecahydroborate Na-7,9-C2B9H12 exhibits superionic conductivity above its order-disorder phase transition temperature, ∼360 K. To investigate the dynamics of the anions and cations in this compound at the microscopic level, we have measured the 1H and 23Na nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates over the temperature range of 148–384 K. It has been found that the transition from the low-T ordered to the high-T disordered phase is accompanied by an abrupt, several-orders-of-magnitude acceleration of both the reorientational jump rate of the complex anions and the diffusive jump rate of Na+ cations. These results support the idea that reorientations of large [C2B9H12]− anions can facilitate cation diffusion and, thus, the ionic conductivity. The apparent activation energies for anion reorientations obtained from the 1H spin-lattice relaxation data are 314 meV for the ordered phase and 272 meV for the disordered phase. The activation energies for Na+ diffusive jumps derived from the 23Na spin-lattice relaxation data are 350 and 268 meV for the ordered and disordered phases, respectively.


Sign in / Sign up

Export Citation Format

Share Document