An ab initio Molecular Orbital Study of Bonding in Fluorocarbonium Ions
Ab initio molecular orbital calculations are reported for the series of carbonium ions (CH3)+, (FCH2)+, and (F2CH)+ and for their neutral molecule counterparts CH4, CH3F, and CH2F2. The energies and wavefunctions for the carbonium ions have been calculated both with and without including the carbon 2pπ orbital in the minimal basis set in order to unravel the inductive destabilization and resonance stabilization due to fluorine substitution. The increase in bonding energy with multiple fluorine substitution is less than linear, due primarily to nonadditivity in the dative carbon–fluorine π bonding. The "saturation" effect noted previously for the hydride abstraction reaction enthalpies is shown to be due primarily to stability effects in the neutral molecules themselves rather than to energetic effects of the carbonium ions.