scholarly journals Nuclear magnetic resonance and molecular orbital studies of the conformational preferences of the fluoromethyl group in some benzylfluoride derivatives

1976 ◽  
Vol 54 (8) ◽  
pp. 1322-1328 ◽  
Author(s):  
Ted Schaefer ◽  
J. Brian Rowbotham ◽  
William J. E. Parr ◽  
Kirk Marat ◽  
Alexander F. Janzen

The proton magnetic resonance spectra of some benzylfluoride derivatives yield long-range spin–spin coupling constants between ring protons and protons or fluorine nuclei in the fluoromethyl group. In conjunction with the eigenfunctions for a hindered twofold rotor, the couplings over six bonds are used to show that in 3,5-dichlorobenzylfluoride in solution the C—F bond prefers the benzene plane by 260 ± 50 cal/mol; in close agreement with ab initia and MINDO/3 molecular orbital calculations. The latter method suggests that in a conformation in which the C—F bond lies in a plane perpendicular to the benzene ring, the C – C – F angle reduces to 107.2° and the C – C – H angles become 116.1°, perhaps due to increased conjugation of the C—F bond or fluorine atom with the π electrons of the ring. The observed barrier is presumably a delicate balance between steric interactions, hyperconjugation or p–p conjugation effects, and dipole–dipole interactions between polarized bonds.


1971 ◽  
Vol 49 (19) ◽  
pp. 3216-3228 ◽  
Author(s):  
R. Wasylishen ◽  
T. Schaefer

Precise analyses of the proton and some fluorine magnetic resonance spectra in acetone solution are reported for the three monofluorobenzaldehydes as well as for 2-chloro-6-fluorobenzaldehyde and for 4-fluoro-2-nitrobenzaldehyde. The conformational dependence of the coupling parameters allows the measurement of energy differences between the O-cis and O-trans conformations. The energy differences are in better agreement with the INDO predictions than they are with energies derived from i.r. data. Di-pole moments are computed reliably and their measurement is suggested as a good guide to conformational preferences for molecules of this kind. The spin–spin coupling constants between the aldehyde proton and the ring protons and fluorine nuclei are computed for benzaldehyde and the three monofluorobenzaldehydes by the INDO and CNDO molecular orbital approximations. In many instances the agreement between calculated and observed couplings is quantitative.



1972 ◽  
Vol 50 (2) ◽  
pp. 274-280 ◽  
Author(s):  
R. Wasylishen ◽  
T. Schaefer

Evidence is adduced, mainly from proton chemical shift and long-range coupling constant data, that the anti isomer of 2-furanaldoxime exists almost exclusively in the s-cis form in solution, independently of the type of intermolecular association that occurs. Intramolecular hydrogen bonding apparently is absent in this isomer. Similarly, the syn isomer exists in roughly equal mixtures of s-cis and s-trans forms in solvents of widely different polarities. A variety of nuclear spin–spin coupling constants are calculated via the INDO and CNDO molecular orbital approximations, as are the dipole moments and conformational energies, for 2-furanaldehyde and its oximes. On the whole the experimental trends are well reproduced by the computations.



1976 ◽  
Vol 54 (20) ◽  
pp. 3216-3223 ◽  
Author(s):  
William J. E. Parr ◽  
Roderick E. Wasylishen ◽  
Ted Schaefer

The stereospecific spin–spin coupling constants over five bonds between the α-proton in the side chain and the protons in the heterocycle in 2-vinylfuran, in its β-nitro and β-aldehydic derivatives, and in 2-vinylthiophene are used to demonstrate the preponderance of the s-trans conformers in polar and nonpolar solutions. These conclusions are compared with predictions made by molecular orbital theory at the STO-3G, INDO, CNDO/2, and MINDO/3 levels. Long-range coupling constants between the protons in the side chain and protons in the heterocycle are calculated by CNDO/2 and INDO–MO–FPT and are compared with experiment. It is concluded that the five-bond couplings involving the α-proton are most sensitive to conformation and that they are transmitted mainly via a σ electron mechanism. The other long-range coupling constants are discussed in terms of σ and π electron mechanisms. The STO-3G calculations yield barriers to internal rotation of greater than 4.8 kcal/mol.



1977 ◽  
Vol 55 (3) ◽  
pp. 557-561 ◽  
Author(s):  
William J. E. Parr ◽  
Ted Schaefer

The long-range spin–spin coupling constants between protons bonded to silicon and ring protons in C6H5SiH3, C6H5SiH2Cl, C6H5SiH2CH3, C6H5SiHCl2, and C6H5SiH(CH3)2 are determined from the proton magnetic resonance spectra of benzene solutions. A hindered rotor treatment of the barrier to internal rotation about the C—Si bond, in conjunction with the coupling constants over six bonds, allows the deduction of the low-energy conformations for C6H5SiH(CH3)2 and for C6H5SiHCl2, as well as of barriers of 1.0 ± 0.2 kcal/mol. The approach becomes less reliable for C6H5SiH2CH3 and for C6H5SiH2Cl and, particularly for the latter compound, the derived barrier is very likely an upper limit only. Ab initio molecular orbital calculations of the conformational energies are reported for C6H5SiH3, C6H5SiH2Cl, and for C6H5SiHCl2.



1973 ◽  
Vol 51 (6) ◽  
pp. 961-973 ◽  
Author(s):  
R. Wasylishen ◽  
T. Schaefer

Molecular orbital calculations, at the INDO level, of the spin–spin coupling constants over three bonds between carbon-13 and protons are reported for a number of simple molecules. In propane the coupling depends on dihedral angle in the Karplus manner. Fluorine substituents cause changes in the computed coupling which are best described as alternating with the number of bonds intervening between the substituent and the coupled nuclei. Finer details of this phenomenon are discussed and calculations on propyllithium are performed. Replacement of a central carbon atom in propane by a heteroatom does not radically alter the computed couplings. The presence of a carbonyl group in the coupling path results in an overestimate of the magnitude of the coupling. In propene the coupling between 13C in position 1 and a methyl proton displays a maximum when the C—H bond of the methyl group lies parallel to the π orbitals. In toluene the coupling to a methyl proton is insensitive to the dihedral angle over half its range, a result of importance to structural studies. Among other molecules under consideration are methylacetylene, propionaldehyde, and the strained bicyclobutane. It is suggested that in certain instances the mean of the predictions from the INDO and CNDO/2 procedures may agree better with experiment than will the prediction from either procedure alone. Calculations on fluorobenzene and 1,2-difluorobenzene suggest that the main experimental trends of the couplings between carbon and protons within the benzene ring are reproduced. Such is perhaps not true for the five-membered heterocycles.



1986 ◽  
Vol 64 (10) ◽  
pp. 2013-2020 ◽  
Author(s):  
Ted Schaefer ◽  
Glenn H. Penner

The mechanisms of long-range spin–spin coupling constants involving the methylene protons and the 13C nucleus of the cyano group are discussed for benzyl cyanide. Analysis of the 1H nmr spectrum of benzyl cyanide-8-13C in benzene-d6 solution yields nJ(H,CH2) and nJ(H,13CN) for n = 4–6. Similar data are reported for the 2,6-dichloro and 2,6-difluoro derivatives, together with some sign determinations. nJ(13C,13CN), n = 1–5, are given for the three compounds. It is shown that all these parameters are consistent with a small barrier to internal rotation about the [Formula: see text] bond in benzyl cyanide in solution. Computations at various levels of molecular orbital theory agree that this barrier is small. The nJ(13C, 13CN) imply a stabilization in polar solvents of the conformation in which the cyano group of benzyl cyanide lies in a plane perpendicular to the benzene plane. The molecular orbital calculations indicate a predominantly twofold nature of the internal barrier, although a significant fourfold component is also present. The coupling constants cannot discern the presence of the fourfold component for benzyl cyanide nor for its 2,6-difluoro derivative. 1J(13C,13CN) is solvent dependent. A table of the computed sidechain geometries is appended.



1972 ◽  
Vol 50 (12) ◽  
pp. 1863-1867 ◽  
Author(s):  
L. Ernst ◽  
H. M. Hutton ◽  
T. Schaefer

The high resolution p.m.r. spectra of 1-penten-3-yne in carbon disulfide and in benzene solution are analyzed. Long-range spin–spin coupling constants are discussed in terms of σ and π electron contributions. Comparisons are made with the isomeric 2-methyl-1-buten-3-yne and the parent compound, vinylacetylene. The results of INDO and CNDO/2 molecular orbital calculations are compared to the experimental coupling constants. It is concluded that the π electron contribution to 5J in enyne systems is +0.6 to 0.7 Hz and that σ electron contributions are rather small, the transoid ("pseudo-zig–zag") being larger than the cisoid one. Observed allylic coupling constants in the propene derivative are compared with the calculated values, including those for propene and 2-cyanopropene, available in the literature.



1995 ◽  
Vol 73 (12) ◽  
pp. 2208-2216 ◽  
Author(s):  
Ted Schaefer ◽  
Scott Kroeker ◽  
David M. McKinnon

The 1H nuclear magnetic resonance spectra of 2-formylstyrene, from dilute solutions in CS2–C6DI2 and acetone-d6, are analyzed to yield precise chemical shifts and spin–spin coupling constants. The long-range coupling constants imply a conformational distribution in which the O-trans conformer is 55% abundant in both polar and nonpolar environments. They also imply that the vinyl group, on average, is twisted out of the aromatic plane to a much larger extent than in styrene. The 6-31G* basis set gives an ab initio potential for the torsion of the vinyl moiety with a relatively deep minimum at 38° out-of-plane, for the O-cis conformer. For the O-trans conformer, two minima are found, one at 45° and another at 129.6°. Essentially the same potential is obtained with the 6-31G** basis. The latter corresponds to a close approach of the hydrogen atom of the formyl group and π orbitals or the β-carbon atom of the olefinic side chain. This local minimum is interesting in terms of a hypothesis used to explain the photochemistry of the molecule. The long-range coupling constants are consistent with the conformational properties calculated for the free molecule; they also indicate no significant difference between the conformational behaviour of the molecule in the two solvents. A proximate coupling constant of −0.16 Hz exists between the formyl and methine (α) protons. The latter is strongly deshielded in the presence of the formyl group, so that it becomes even less shielded than some of the aromatic protons. Keywords: 1H NMR, 2-formylstyrene (o-vinylbenzaldehyde); long-range spin–spin coupling constants, 2-formylstyrene; conformations, three nonplanar of 2-formylstyrene; molecular orbital calculations, conformations of 2-formylstyrene.



1981 ◽  
Vol 59 (21) ◽  
pp. 3021-3025 ◽  
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian ◽  
Timothy A. Wildman

The stereospecific spin–spin coupling constants between the hydroxyl proton and the ring protons for 2-iodophenol in various solvents yield some free energy differences between the cis and trans conformations of this molecule at 305 K. Comparison with areas of the hydroxyl stretching bands in the same or similar solvents shows that the ratio of the absorptivity coefficients for the two conformers is sensitive to solvent. It is suggested that this ratio is temperature dependent and therefore apparent enthalpy differences must be considered tentative for at least some solutions. Molecular orbital calculations are consistent with the arguments concerning the absorptivity coefficients.



Sign in / Sign up

Export Citation Format

Share Document