The chemistry of platinum hydrides. Part XXX. The chemical and structural effects of steric overcrowding in the compounds cis- and trans-H[R3Sn]Pt(PCy3)2, R = Ph, Cl

1988 ◽  
Vol 66 (12) ◽  
pp. 3120-3127 ◽  
Author(s):  
Howard C. Clark ◽  
George Ferguson ◽  
Mark J. Hampden-Smith ◽  
Heinz Ruegger ◽  
Barbara L. Ruhl

The reaction of Pt0(PCy3)2 with triphenyltin hydride yields cis-H(Ph3Sn)Pt(PCy3)2 as the initial product; isomerization to the trans isomer is accelerated by light, heat, and the presence of free phosphine. Both isomers have been characterized by multinuclear nmr spectroscopy; in particular, the 31P {1H} spectra in solution are correlated with the solid state CP/MAS 31P nmr spectra and the crystal structure. The crystal structures of trans-H(X3Sn)Pt(PCy3)2 X = Ph or Cl have been determined and the nature of the distortions produced by steric overcrowding is identified and discussed.


1996 ◽  
Vol 74 (2) ◽  
pp. 144-152 ◽  
Author(s):  
Fernande D. Rochon ◽  
Robert Melanson ◽  
Eryk Thouin ◽  
Corinne Bensimon ◽  
André L. Beauchamp

Complexes of the type [Pt(R-CN)Cl3]− were synthesized and studied by 1H, 13C, and 195Pt NMR spectroscopies. The 2J(195Pt-13C) coupling constants are about 240 Hz. The signals due to the cyano carbon atoms of the coordinated ligands were observed at higher fields than those of the free ligands. The shielding on the cyano carbon increases as the alkyl chain lengthens and also when the branching increases. The 195Pt signals of all the complexes were observed around −2000 ppm. The crystal structures of (NMe4)[Pt(C3H7-CN)Cl3] (1) and (NMe4)[Pt(p-HO-C6H4-CN)Cl3] (2) were determined. Compound 1 is monoclinic, P21/c, a = 8.384(5), b = 15.336(19), c = 11.759(9) Å, β = 99.52(6)°, Z = 4, R = 0.054, and wR = 0.051. Crystal 2 is tetragonal with a = 16.222(6), c = 12.052(5) Å, Z = 8, R = 0.059, and wR = 0.044. The Pt—CL bond trans to the nitrile ligand is shorter than normal (2.276(3) Å for 1 and 2.264(7) Å for 2) while the two other bonds are normal (2.293(4), 2.287(3) Å for 1 and 2.320(7), 2.275(8) Å for 2). The Pt—N bonds are 1.97(1) Å (1) and 1.92(2) Å (2) and the segments Pt-N≡C-C are linear. Disubstituted compounds were also synthesized and studied by multinuclear NMR. The 195Pt signals of the cis isomers were observed at lower fields than those of the trans isomers (Δ ≈ 65 ppm), while the 13C signals of the cyano carbons of the trans isomers were observed at lower fields than those of the cis compounds (Δ ≈ 0.6 ppm). The cis complexes isomerize to the trans compounds upon heating. The crystal structures of cis-(3) and trans-Pt(C2H5-CN)2Cl2 (4) and also of cis-Pt(p-HO-C6H4-CN)2Cl2 (5) were determined. Crystal 3 is monoclinic, P21/c, a = 7.506(5), b = 9.539(5), c = 14.823(7) Å, β = 92.31(4)°, Z = 4, R = 0.050, and wR = 0.042. The trans isomer 4 is monoclinic with the Pt atom on an inversion centre, P21/c, a = 5.149(4), b = 9.394(8), c = 10.944(10) Å, β = 97.84(7)°, Z = 4, R = 0.017 and wR = 0.020. Finally, compound 5 is triclinic, P-1, a = 7.464(3), b = 10.712(6), c = 12.291(5) Å, α = 75.63(4)°, β = 75.63(4)°, γ = 80.32(4)°, Z = 2, R = 0.045, and wR = 0.056. The Pt—Cl bond distances for the cis isomers are 2.269(5), 2.270(4) Å for 3 and 2.274(2), 2.279(3) Å for 5 while they are 2.289(3) Å for the trans isomer (4). The Pt—N bonds are 1.962(14), 1.988(11) Å (3), 1.972(7), 1.976(7) Å (5) and 1.969(5) Å for 4. Key words: platinum, nitrile, NMR, isomerization, crystal structure.



2006 ◽  
Vol 84 (2) ◽  
pp. 277-287 ◽  
Author(s):  
Hari K Gupta ◽  
Philippa E Lock ◽  
Nada Reginato ◽  
James F Britten ◽  
Michael J McGlinchey

Hexaethylbenzene (HEB) and [(p-cymene)RuCl2]2 react in the melt to yield [(HEB)RuCl2]2 (6), the NMR spectra of which reveal the presence of [(HEB)2Ru2(µ-Cl)3]Cl in solution. In [(HEB)2Ru2(µ-Cl)3][C5(CO2Me)5] (7), the cation has D3h symmetry with alternating proximal and distal ethyl groups. Bridge cleavage of 6 with trimethyl phosphite or with trimethylphosphine gives (HEB)RuCl2[P(OMe)3] (9) or (HEB)RuCl2(PMe3) (10), respectively. The latter reaction also yields RuCl2(Me3P)4 (11), whose structure represents a relatively rare example of a crystallographically characterized trans isomer of this type. In 9, five of the ethyl ligands are distal, whereas in 10 all six substituents are distal. Attempts to prepare the sandwich dication [(HEB)2Ru]2+ gave instead [(HEB)Ru(H2O)3](BF4)2 (8), whose NMR and X-ray data reveal the 1,3,5-distal–2,4,6-proximal arrangement of ethyls both in the solid state and in solution. (HEB)Mn(CO)2Br (13) likewise adopts the 1,3,5-distal–2,4,6-proximal structure in the solid state but, surprisingly, there is no evidence for slowed ethyl rotation in solution.Key words: hexaethylbenzene conformations, hindered rotations, crystallography, NMR, ruthenium, manganese.



2018 ◽  
Vol 73 (11) ◽  
pp. 943-951 ◽  
Author(s):  
Clint E. Price ◽  
Ana B. Dantas ◽  
Douglas R. Powell ◽  
Rudolf J. Wehmschulte

AbstractThe bulky phenols 2,6-Ad2C6H3OH (Ad=adamantyl), A, (2,6-Ph2CH)2-4-Me-C6H2OH, B, and (2,6-Tol2CH)2-4-iPr-C6H2OH, C, react with one equivalent of Et3M (M=Al, Ga), Bu2Mg and Et2Zn to afford well-defined mono-phenolate complexes (ArOMRn)m. The aluminum and gallium phenolates derived from the very bulky phenol A are likely monomeric in the solid state. The other compounds are dimeric with bridging phenolates. Crystal structures of compounds with phenols B and C display the dimeric M2O2 cores of the phenolates and illustrate some deviations for the magnesium and zinc compounds. The former possesses stabilizing Mg···C contacts with one of the flanking arene groups of the phenolate substituent, and the latter may be viewed as an intermediate between a symmetric dimer and two monomers. All compounds were characterized by 1H and 13C NMR spectroscopy, and their solution spectra are in agreement with the crystal structure data.



1997 ◽  
Vol 62 (5) ◽  
pp. 746-751 ◽  
Author(s):  
Andreas Franken ◽  
Jaromír Plešek ◽  
Christiane Nachtigal

On treatment of the [(1,2-C2B9H11)2Co]- ion with naphthalene in presence of AlCl3 a remarkably bridged [8,8'-μ-(CH2-C9H6)-(1,2-C2B9H10)2-3-Co]- ion is obtained as a single isolated compound. The triatomic -CH2-C9H6- bridge is derived from the rearranged naphthalene nucleus. The mechanism of this reaction is obscure but it does resemble the "Electrophile-Induced Nucleophilic Substitution" reported earlier. The structure of the compound was established by multinuclear NMR spectroscopy and by single crystal X-ray diffraction.



1982 ◽  
Vol 60 (11) ◽  
pp. 1304-1316 ◽  
Author(s):  
Louis J. Farrugia ◽  
Brian R. James ◽  
Claude R. Lassigne ◽  
Edward J. Wells

The octahedral anions [M(SnCl3)5Cl]4− (M = Ru, Os) have been fully characterized by 119Sn FT nmr spectroscopy. For M = Ru, 117Sn and 115Sn nmr spectra were also recorded, and an X-ray crystallographic study was carried out on the tetraethylammonium salt, isolated as a disolvate from acetonitrile. The Ru—Sn bond lengths indicate some degree of dπ–dπ interactions. The slight distortions from octahedral geometry are discussed in connection with the packing of the chlorine atoms. The Sn nmr spectra reveal the first observed coupling to a 99Ru nucleus (I = 5/2, 12.7% natural abundance), very large 2J(119Sn—117Sn) coupling constants, and the first observed second-order effects on a heteronuclear system. The octahedral anion [Ru(SnCl3)5(MeCN)]3− was also synthesized as the tetraethylammonium salt and characterized spectroscopically.





2016 ◽  
Vol 52 (45) ◽  
pp. 7186-7204 ◽  
Author(s):  
Sharon E. Ashbrook ◽  
David McKay

DFT calculations are an important tool in assigning and interpreting NMR spectra of solids: we discuss recent developments and their future potential in the context of NMR crystallography.





Sign in / Sign up

Export Citation Format

Share Document