Polarimetric and nuclear magnetic resonance studies of the complexation of mercury by thiols

1988 ◽  
Vol 66 (12) ◽  
pp. 3184-3189 ◽  
Author(s):  
Mohamed M. Shoukry ◽  
Bruce V. Cheesman ◽  
Dallas L. Rabenstein

The complexation of Hg(II) by glutathione has been studied by polarimetry under conditions of excess ligand with the objective of characterizing formation of the 3:1 complex, Hg(glutathione)3. The optical rotatory power of solutions containing glutathione only and of solutions containing glutathione and Hg(II) at ratios of 2:1, 2.5:1, 3:1, and 4:1 was measured as a function of pH. Acid dissociation constants for the ammonium and thiol groups of glutathione and for the two ammonium groups of Hg(glutathione)2 and the formation constant of the 3:1 complex (Hg(glutathione)2 + glutathione [Formula: see text] Hg(glutathione)3) were determined from the pH dependence of the optical rotatory power. The value obtained for the formation constant, Kf = 1.5 × 103, indicates that binding of the third ligand to form Hg(glutathione)3 is much weaker than binding of the first two glutathione ligands. However, calculations indicate that binding is sufficiently strong that a significant fraction of Hg(II) is present as Hg(glutathione)3 under physiological conditions. Equilibrium constants were also determined by polarimetry and by 13C nuclear magnetic resonance for the displacement of one thiolate ligand by another (RSHgSR + R′SH [Formula: see text] RSHgSR′ + RSH; RSHgSR′ + R′SH [Formula: see text] R′SHgSR′ + RSH). The results indicate that, at pH 5.5 and at physiological pH, the relative stability increases in the order Hg(glutathione)2 < Hg(penicillamine)2 < Hg(mercaptoethylamine) 2. However, when competitive protonation of free ligand is accounted for, it is shown that the intrinsic stability of the complexes increases in the order Hg(penicillamine)2 < Hg(mercaptoethylamine)2 < Hg(glutathione)2, which parallels the order of the Brønsted basicity of the thiolate ligands.

1965 ◽  
Vol 43 (5) ◽  
pp. 1516-1526 ◽  
Author(s):  
Max T. Rogers ◽  
Jane L. Burdett

The effect of various solvents on the proton chemical shifts of a number of acyclic β-di-ketones and β-ketoesters has been observed by nuclear magnetic resonance spectroscopy. These shifts are discussed in terms of the dissociation of intramolecular and intermolecular hydrogen bonds on dilution. A complex of benzene with the enol tautomer of the β-dicarbonyl molecule is proposed. The effect of solvents on the position of the tautomeric equilibrium is discussed.


1998 ◽  
Vol 76 (2-3) ◽  
pp. 198-209 ◽  
Author(s):  
André H Juffer

The purpose of this review is to introduce several computational procedures for the determination of acid-dissociation constants (pKa) of titratable groups in proteins. Several concepts, such as continuum electrostatics and the exact meaning of intrinsic and apparent pKas, will be explained in some detail. Each of the methods will be judged on its merits, and some comparisons between the methods will be presented. While the emphasis of this review will be on theoretical formulations, the experimental determination by means of nuclear magnetic resonance will be briefly explained. The determination of individual pKa values by nuclear magnetic resonance in combination with computationally determined pKas can provide unique information about the pH-dependent properties of proteins and their complexes with peptides, DNA, and ligands.Key words: acid-dissociation constants, NMR, continuum electrostatics, dielectric constant of proteins, Monte Carlo, molecular dynamics.


Sign in / Sign up

Export Citation Format

Share Document