tautomeric equilibrium
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 36)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Vol 22 (21) ◽  
pp. 11763
Author(s):  
Magda Chalecka ◽  
Adam Kazberuk ◽  
Jerzy Palka ◽  
Arkadiusz Surazynski

Studies of cancer metabolism have focused on the production of energy and the interconversion of carbons between cell cycles. More recently, amino acid metabolism, especially non-essential amino acids (NEAAs), has been investigated, underlining their regulatory role. One of the important mediators in energy production and interconversion of carbons in the cell is Δ1-pyrroline-5-carboxylate (P5C)—the physiological intracellular intermediate of the interconversion of proline, ornithine, and glutamate. As a central component of these conversions, it links the tricarboxylic acid cycle (TCA), urea cycle (UC), and proline cycle (PC). P5C has a cyclic structure containing a tertiary nitrogen atom (N) and is in tautomeric equilibrium with the open-chain form of L-glutamate-γ-semialdehyde (GSAL). P5C is produced by P5C synthase (P5CS) from glutamate, and ornithine via ornithine δ-amino acid transferase (δOAT). It can also be converted to glutamate by P5C dehydrogenase (P5CDH). P5C is both a direct precursor of proline and a product of its degradation. The conversion of P5C to proline is catalyzed by P5C reductase (PYCR), while proline to P5C by proline dehydrogenase/oxidase (PRODH/POX). P5C-proline-P5C interconversion forms a functional redox couple. Their transformations are accompanied by the transfer of a reducing-oxidizing potential, that affect the NADP+/NADPH ratio and a wide variety of processes, e.g., the synthesis of phosphoribosyl pyrophosphate (PRPP), and purine ribonucleotides, which are crucial for DNA synthesis. This review focuses on the metabolism of P5C in the cell as an interconversion mediator of proline, glutamate, and ornithine and its role in the regulation of survival and death with particular emphasis on the metabolic context.


2021 ◽  
Vol 55 (2 (255)) ◽  
pp. 112-117
Author(s):  
Karine R. Grigoryan ◽  
Hasmik A. Shilajyan ◽  
Iskuhi L. Aleksanyan ◽  
Zara L. Grigoryan ◽  
Lilit P. Hambardzumyan

Fluorescence properties of 4-hydroxy-2-methylquinoline (1) and 2-(5-mercapto-1,3,4-oxadiazol-2-yl)-6-methylquinoline-4-ol (2) were studied in dimethylsulfoxide (DMSO) aqueous solutions. The fluorescence properties of 1 and 2 exhibit substantial dependence on the DMSO concentration. The fluorescence quantum yield $(\Phi_f)$ of 1 decreases upon adding DMSO due to the shift in the keto-enol (E) tautomeric equilibrium toward E form․ On the contrary 2 demonstrates a tendency of increase of $\Phi_f$ upon adding DMSO due to intermolecular charge transfer from DMSO to the aromatic ring of quinoline, which increases the electron density on the ring and hence the fluorescence efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Małgorzata A. Kaczorowska ◽  
Anna Kaczmarek-Kędziera ◽  
Borys Ośmiałowski

AbstractThe stability of two groups of conformationally locked molecules, similar in topology, but differing only by the type of the bridge rigidifying their structure, is studied. The series of the less-rigid 2-phenacylheterocyclic compounds and their stiff difluoroboranyl derivatives are investigated for the determination of the effect of $$\hbox {NCH}_3$$ NCH 3 /S/O replacement in a five-membered heterocyclic ring and the presence of a strong electron-donating group on the tautomeric equilibrium, protonation affinity, and fragmentation pattern observed in the structural elucidation by means of mass spectrometry technique. The results of the $$\omega $$ ω B97X-D/6-311++G(d,p) calculations, the topological analysis of electron density as well as the experimental MS measurements show the importance of the number of heteroatoms, their properties, and location in the molecule for the rational design of the systems of desired stable tautomers or the favorable protonation sites. The obtained data allow for the understanding of the fundamentals of the novel highly fluorescent difluoroborates fragmentation behavior, vital for their structural elucidation with the application of high-resolution tandem mass spectrometry methods.


2021 ◽  
Vol 191 ◽  
pp. 109377
Author(s):  
Chenchen Yang ◽  
Jinshuai Song ◽  
Ying Ding ◽  
Haohui Ren ◽  
Mingming Yu ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 699
Author(s):  
Valentina Martinez ◽  
Nikola Bedeković ◽  
Vladimir Stilinović ◽  
Dominik Cinčić

In order to study the effect of halogen bond on tautomerism in β-diketones in the solid-state, we have prepared a series of cocrystals derived from an asymmetric β-diketone, benzoyl-4-pyridoylmethane (b4pm), as halogen bond acceptor and perfluorinated iodobenzenes: iodopentaflourobenzene (ipfb), 1,2-, 1,3- and 1,4-diiodotetraflorobenzene (12tfib, 13tfib and 14tfib) and 1,3,5-triiodo-2,4,6-trifluorobenzene (135titfb). All five cocrystals are assembled by I···N halogen bonds involving pyridyl nitrogen and iodoperfluorobenzene iodine resulting in 1:1 (four compounds) or 1:2 (one compound) cocrystal stoichiometry. Tautomer of b4pm in which hydrogen atom is adjacent to the pyridyl fragment was found to be more stable in vacuo than tautomer with a benzoyl hydroxyl group. This tautomer is also found to be dominant in the majority of crystal structures, somewhat more abundantly in crystal structures of cocrystals in which additional I···O halogen bond with the benzoyl oxygen has been established. Attempts have also been made to prepare an equivalent series of cocrystals using a closely related asymmetric β-diketone, benzoyl-3-pyridoylmethane (b3pm); however, all attempts were unsuccessful, which is attributed to more effective crystal packing of b3pm isomer compared to b4pm, which reduced the probability of cocrystal formation.


Author(s):  
Ádám Golcs ◽  
Panna Vezse ◽  
Bálint Árpád Ádám ◽  
Péter Huszthy ◽  
Tünde Tóth

AbstractCrown ethers containing an acridone or an acridine unit are successfully applied opto- and electrochemical cation sensors. The heteroaromatic unit of these macrocycles can be in different forms during the applications, which have a strong influence on the sensing behavior. Moreover, in the case of acridono-macrocycles a prototropic equilibrium takes place upon complexation, which is effected by the physicochemical characteristics. A Pb2+-selective acridono-18-crown-6 ether and its 9-phenylacridino-analogue were used as model compounds for comparing the different forms of the heterocyclic units of these sensor molecules. Since in most practical sensor applications of the fluorescent hosts a non-neutral aqueous medium is present, studies on complexation and signaling were carried out from the aspect of the relationship among protonation, coordinating ability, complex stability and tautomeric equilibrium. A strong interdependence among these factors was found and limitations of using unsubstituted acridino- and acridono-sensor molecules in comparison with their 9-substituted-acridino-analogues were discussed. This study will hopefully serve as a useful standpoint for future development of ionophore-based sensors containing an acridone or an acridine unit.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1283 ◽  
Author(s):  
Ilya G. Shenderovich ◽  
Gleb S. Denisov

An implicit account of the solvent effect can be carried out using traditional static quantum chemistry calculations by applying an external electric field to the studied molecular system. This approach allows one to distinguish between the effects of the macroscopic reaction field of the solvent and specific solute–solvent interactions. In this study, we report on the dependence of the simulation results on the use of the polarizable continuum approximation and on the importance of the solvent effect in nonpolar solvents. The latter was demonstrated using experimental data on tautomeric equilibria between the pyridone and hydroxypyridine forms of 2,6-di-tert-butyl-4-hydroxy-pyridine in cyclohexane and chloroform.


Sign in / Sign up

Export Citation Format

Share Document