Study of the dissociation of the products of some proton transfer reactions in acetonitrile solvent

1992 ◽  
Vol 70 (3) ◽  
pp. 935-942 ◽  
Author(s):  
Wlodzimierz Galezowski ◽  
Arnold Jarczewski

The conductometric study of the products of the proton transfer reactions of C-acids (nitriles, nitroalkanes, and 2,4,6-trinitrotoluene) with the strong amine bases (1,1,3,3-tetramethylguanidine (TMG), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,8-bis(dimethylamino)naphthalene (DMAN), and piperidine) in acetonitrile shows their large degree of dissociation into free ions. The dissociation constant values have been estimated at 25 °C to be larger than 1 × 10−4 M. This weakens the formalism commonly accepted in spectrophotometric kinetic studies of these systems of reactions, based on the assumption that the product is an ion pair. Spectrophotometric equilibrium and kinetic measurements provided evidence that reverse reaction is a second-order process (pseudo-first order because cation concentration is controlled by side reactions). The influence of the common cation (TMGH+) on the equilibria of the proton abstraction from 2-methyl-1-(4-nitrophenyl)-1-nitropropane and 4-nitrophenylcyanomethane with TMG base in acetonitrile at 25 °C was examined and was found to be compatible with the assumption of large dissociation of the reaction product for free ions. "Equilibrium constants" estimated by the Benesi and Hildebrand method (which assumes an ion-pair product) decreased with increasing concentration of added TMGH+ cation, but these "equilibrium constants" multiplied by [TMGH+] are constant. The observed pseudo-first-order rate constants of the proton transfer reaction, measured at large excess of the base over C-acid, grow with the cation concentration due to the increase of the backward reaction rate. The concentration of added common cation shows a negligible influence on the observed rate constants of deuteron transfer reaction. Thus, as a result of side reactions, in which extra amounts of cation are formed, some second-order rate constants [Formula: see text] and also kinetic isotope effects (KIEs) [Formula: see text] that have been measured in acetonitrile can be substantially overestimated. Keywords: ion-pair dissociation, proton transfer reactions, kinetic isotope effects.

1988 ◽  
Vol 66 (6) ◽  
pp. 1454-1458 ◽  
Author(s):  
Kenneth T. Leffek ◽  
Przemyslaw Pruszynski

Equilibrium constants, rate constants, primary deuterium isotope effects, and activation parameters have been measured for the proton transfer reactions in acetonitrile solvent of 4-nitrophenylphenylcyanomethane and 2-methyl-4-nitrophenylphenyl-cyanomethane with tetramethylguanidine base and for the reactions of 2-methyl-4-nitrophenylphenylcyanomethane and 2,6-di-methyl-4-nitrophenylphenylcyanomethane with 1,5-diazabicyclo[5.4.0]undec-7-ene base. Introduction of the ortho-methyl groups in the substrate molecule caused significant reductions in the equilibrium and rate constants. The expected rise in the kinetic primary deuterium isotope effect was not observed when the first ortho-methyl group was introduced, but a 20% increase did accompany the introduction of the second ortho-methyl group. Enthalpy of activation measurements indicated that there was no increase in the proton tunnelling contribution to the isotope effect when the amount of steric hindrance is increased with ortho-methyl groups.


Sign in / Sign up

Export Citation Format

Share Document