isotopic effects
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 38)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Vol 118 (52) ◽  
pp. e2114221118
Author(s):  
François Robert ◽  
Marc Chaussidon ◽  
Adriana Gonzalez-Cano ◽  
Smail Mostefaoui

Enrichment or depletion ranging from −40 to +100% in the major isotopes 16O and 24Mg were observed experimentally in solids condensed from carbonaceous plasma composed of CO2/MgCl2/Pentanol or N2O/Pentanol for O and MgCl2/Pentanol for Mg. In NanoSims imaging, isotope effects appear as micrometer-size hotspots embedded in a carbonaceous matrix showing no isotope fractionation. For Mg, these hotspots are localized in carbonaceous grains, which show positive and negative isotopic effects so that the whole grain has a standard isotope composition. For O, no specific structure was observed at hotspot locations. These results suggest that MIF (mass-independent fractionation) effects can be induced by chemical reactions taking place in plasma. The close agreement between the slopes of the linear correlations observed between δ25Mg versus δ26Mg and between δ17O versus δ18O and the slopes calculated using the empirical MIF factor η discovered in ozone [M. H. Thiemens, J. E. Heidenreich, III. Science 219, 1073–1075; C. Janssen, J. Guenther, K. Mauersberger, D. Krankowsky. Phys. Chem. Chem. Phys. 3, 4718–4721] attests to the ubiquity of this process. Although the chemical reactants used in the present experiments cannot be directly transposed to the protosolar nebula, a similar MIF mechanism is proposed for oxygen isotopes: at high temperature, at the surface of grains, a mass-independent isotope exchange could have taken place between condensing oxides and oxygen atoms originated form the dissociation of CO or H2O gas.


Ecohydrology ◽  
2021 ◽  
Author(s):  
Clément Duvert ◽  
Caroline A. Canham ◽  
Adrià Barbeta ◽  
Diego Alvarez Cortes ◽  
Lisa Chandler ◽  
...  

2021 ◽  
Vol 59 (11) ◽  
pp. 1090-1105
Author(s):  
V. B. Polyakov ◽  
M. V. Mironenko ◽  
M. V. Alenina

Abstract— The GEOCHEQ_Isotope software package, elaborated previously for modeling chemical and carbon isotope equilibria in hydrothermal and hydrogeochemical systems by minimizing the Gibbs energy, is extended to the simultaneous calculation of carbon and oxygen isotopic effects. Similar to what was done for carbon, the β-factor formalism was used to develop algorithms and a database for calculating the isotopic effects of oxygen. According to the developed algorithm, the Gibbs energy of formation of a rare isotopologue, G*(P, T), is calculated through the Gibbs energy of formation of the main isotopologue, the value of the β18O factor of this substance, and the mass ratio of the rare (18O) and main (16O) isotopes. The isotope mixture is assumed to be ideal. The temperature dependence of the β-factor is unified as a polynomial in reciprocal absolute temperature. Necessary information on oxygen isotope equilibria involving important geochemical compounds was critically analyzed, and the available data were reconciled and modified. The temperature dependences of the β18O-factors were correspondingly optimized. The thermodynamic database was updated by adding information on the temperature dependence of β18O-factors specified by polynomial coefficients for each substance. The usage of the GEOCHEQ_Isotope software package and the corresponding database is demonstrated by modeling the dependence of oxygen and carbon isotope fractionation factors on the acidity of the solution (pH) in a carbonate hydrothermal system. The simulation results are in a good agreement with experimental data available from the literature. The enrichment of dissolved carbonates in the 18O heavy oxygen isotope relative to water decreases with increasing pH of the system. At the same time, a pH increase results in a decrease in the negative carbon isotope shift between calcite and dissolved carbonates. At high pH values (~11), the isotope shift inversion and the enrichment of the dissolved carbonate in the heavy carbon isotope relative to calcite are predicted.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panpan Kong ◽  
Vasily S. Minkov ◽  
Mikhail A. Kuzovnikov ◽  
Alexander P. Drozdov ◽  
Stanislav P. Besedin ◽  
...  

AbstractThe discovery of superconducting H3S with a critical temperature Tc∼200 K opened a door to room temperature superconductivity and stimulated further extensive studies of hydrogen-rich compounds stabilized by high pressure. Here, we report a comprehensive study of the yttrium-hydrogen system with the highest predicted Tcs among binary compounds and discuss the contradictions between different theoretical calculations and experimental data. We synthesized yttrium hydrides with the compositions of YH3, YH4, YH6 and YH9 in a diamond anvil cell and studied their crystal structures, electrical and magnetic transport properties, and isotopic effects. We found superconductivity in the Im-3m YH6 and P63/mmc YH9 phases with maximal Tcs of ∼220 K at 183 GPa and ∼243 K at 201 GPa, respectively. Fm-3m YH10 with the highest predicted Tc > 300 K was not observed in our experiments, and instead, YH9 was found to be the hydrogen-richest yttrium hydride in the studied pressure and temperature range up to record 410 GPa and 2250 K.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Andrey K. Belyaev ◽  
Yaroslav V. Voronov
Keyword(s):  

Author(s):  
Carlos P. Herrero ◽  
Rafael Ramírez
Keyword(s):  

2021 ◽  
Vol 180 ◽  
pp. 109263
Author(s):  
Nguyen Van Hung ◽  
Nguyen Ba Duc ◽  
Dinh Quoc Vuong ◽  
Tong Sy Tien ◽  
Nguyen Cong Toan

Sign in / Sign up

Export Citation Format

Share Document