The effect of meta- or para-cyano substitution on the reactivity of the radical cations of arylalkenes and alkanes. Radical ions in photochemistry, Part 34

1995 ◽  
Vol 73 (3) ◽  
pp. 307-318 ◽  
Author(s):  
Donald R. Arnold ◽  
Xinyao Du ◽  
Jing Chen

The effect of electron-withdrawing substituents, meta- or para-cyano, on the reactivity of the radical cation of arylalkenes and alkanes has been determined. The radical cations were generated by single electron transfer (set) to an electron-accepting photosensitizer. Three reactions were studied: (i) the addition of nucleophile to the radical cation of arylalkenes, (ii) cleavage of the benzylic carbon–carbon bond of the radical cation of arylalkanes; and (iii) the deprotonation of the benzylic carbon–hydrogen bond of the radical cation of arylalkanes. The radical cations of 4-(1-phenylethenyl)benzonitrile (1b), 3-(1-phenylethenyl)benzonitrile (1c), 4-(2-methoxy-1-phenylethyl)benzonitrile (2b), 3-(2-methoxy-1-phenylethyl)benzonitrile (2c), cis- and trans-5-cyano-2-methoxy-1-phenylindane (6b-cis and -trans), and 6-cyano-3-phenylindene (7b) were generated, by single electron transfer to the lowest excited singlet state of 1,4-dicyanobenzene (3), in acetonitrile–methanol. The radical cations of 1b, 1c, and 7b react with methanol to yield the anti-Markovnikov adducts (2b, 2c, and 6b-cis and 6b-trans). The radical cations of 2b, 2c, and 6b-trans cleave at the benzylic carbon–carbon bond to give products derived from the radical and carbocation fragments. The radical cation of 6b-cis deprotonates from the benzylic position with subsequent formation of the diastereomer, 6b-trans. This behaviour can be explained/predicted on the basis of the proposed mechanisms for these reactions. Molecular orbital calculations (AM1) support the conclusions. Keywords: photosensitized, electron transfer, radical ions, radicals, molecular orbital calculations (AM1).

1991 ◽  
Vol 69 (5) ◽  
pp. 839-852 ◽  
Author(s):  
Donald R. Arnold ◽  
Xinyao Du ◽  
Kerstin M. Henseleit

The effect of meta- and para-methoxy substitution on the reactivity of some radical cations has been determined. The compounds chosen for study were 1-(3-methoxyphenyl)-1-phenylethylene (7), 1-(4-methoxyphenyl)-1-phenylethylene (8), 3-(3-methoxyphenyl)indene (9), 3-(4-methoxyphenyl)indene (10), methyl 2-(3-methoxyphenyl)-2-phenylethyl ether (11), methyl 2-(4-methoxyphenyl)-2-phenylethyl ether (12), cis- and trans-2-methoxy-1-(3-methoxyphenyl)indane (13), and cis- and trans-2-methoxy-1-(4-methoxyphenyl)indane (14). The radical cations of these compounds were generated by photosensitization (electron transfer) using 1,4-dicyanobenzene (3) as the electron acceptor. The three reactions studied were: (1) The addition of nucleophiles (methanol) to the radical cation of the arylalkenes, a reaction that yields the anti-Markovnikov addition product. (2) The carbon–carbon bond cleavage of radical cations, which yields products derived from the radical and carbocation fragments. (3) The deprotonation of the radical cation, a reaction that can be used to invert the configuration at a saturated carbon centre. The mechanisms of these reactions are discussed and the factors that need to be considered in order to predict reactivity are defined. Molecular orbital calculations (UHF/STO-3G) were carried out on the radical cations of the model compounds 3- and 4-vinylanisole and 3- and 4-methylanisole. Key words: photochemistry, photosensitize (electron transfer), radical cation, radical.


2003 ◽  
Vol 81 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Carmela R Jackson Lepage ◽  
Lynn Mihichuk ◽  
Donald G Lee

The mechanism for the oxidation of sulfides by [(me4-salen)CrV(O)(pyO)]CF3SO3, where me4-salen is 8,8,8',8'-tetramethylsalen and pyO is pyridine N-oxide, has been investigated. Results from Hammett correlations on the rates of oxidation of substituted thioanisoles, frontier molecular orbital calculations, and product studies are consistent with a mechanism that is initiated by a single electron transfer to give a radical cation intermediate.Key words: oxidation, chromium(V), sulfides, radical cation, oxygen transfer.


1987 ◽  
Vol 65 (12) ◽  
pp. 2734-2743 ◽  
Author(s):  
Donald R. Arnold ◽  
Brian J. Fahie ◽  
Laurie J. Lamont ◽  
Jacek Wierzchowski ◽  
Kent M. Young

The photosensitized (electron transfer) reactions of 3-phenyl-2,3-dihydrobenzofuran (8a), 5-methyl-3-phenyl-2,3-dihydrobenzofuran (8b), cis and trans-2-methoxy-1-phenylindane (9, cis and trans), 3,3-diphenyltetrahydrofuran (10), and 2,2-diphenyl-1-methoxycyclopentane (11) have been studied using 1,4-dicyanobenzene as an electron-accepting photosensitizer and acetonitrile–methanol (3:1) as solvent. These reaction conditions cause carbon–carbon bond cleavage of analogous acyclic β,β-diphenylethyl ethers to give products derived from the diphenylmethyl radical and the α-oxycarbocation intermediates. The purpose of this study was to determine if this reaction could be applied to five-membered cyclic derivatives to give 1,5-radical cations.The primary products from 8a and 8b were the dehydrogenated, aromatized 3-phenylbenzofurans 14a and 14b. These products react further; continued irradiation gave the methanol adducts, cis and trans-2-methoxy-3-phenyl-2,3-dihydrobenzofuran (15a and 15b, cis and trans). The only observed reaction of the indanes (9, cis and trans) was cis-trans isomerization. Deuterium was incorporated at the bis-benzylic position of 8 and 9 when the irradiation was carried out in acetonitrilemethanol-O-d. These results are consistent with reversible deprotonation from the radical cations. There was no evidence for carbon–carbon bond cleavage with either 8 or 9. The relative rate, deprotonation faster than carbon–carbon bond cleavage, is explained in terms of the conformation of the bond that cleaves in relation to the singly occupied molecular orbital (SOMO) of the radical cation. Oxidation potential measurements support the conclusion that the SOMO of 8 and 9 is largely associated with the fused phenyl ring and is therefore orthogonal to the benzylic carbon–carbon bond. Irradiation of cis or trans-2-methoxy-3-phenyl-2,3-dihydrobenzofuran (15a, cis or trans), under these conditions, leads to cis–trans isomerization. The mechanism in this case involves the reversible loss of methanol. There is evidence that the addition of methanol to 14 involves the sensitizer radical anion – 14 radical cation pair.In contrast with the fused bicyclic systems, the monocyclic tetrahydrofuran 10 and the methoxycyclopentane 11 both cleave under these conditions; the products are the expected acetals 22 and 29 formed from the intermediate 1,5-radical cations. In 10 and 11 the SOMO, which is largely associated with the diphenylmethyl moiety, can overlap with the adjacent carbon–carbon bond and cleavage occurs as in analogous acyclic systems. Both 10 and 11 are relatively stable to irradiation under conditions that are identical except with acetonitrile as solvent (without methanol). We found no evidence for cyclization of the intermediates (1,5-radical cation or 1,5-diradical) into the terminal phenyl ring.


1991 ◽  
Vol 69 (9) ◽  
pp. 1365-1375 ◽  
Author(s):  
Xinyao Du ◽  
Donald R. Arnold ◽  
Russell J. Boyd ◽  
Zheng Shi

Carbon–carbon bond cleavage of the radical cations of 1-butene [Formula: see text] and 4,4-dimethyl-1-pentene [Formula: see text] will generate the allyl and alkyl radical and carbocation fragments. Alternative bonding arrangements between the allyl and methyl moieties in [Formula: see text] and between the allyl and tert-butyl moieties in [Formula: see text] possible metastable intermediates or transition states preceding complete separation of the fragments, have been investigated by ab initio molecular orbital calculations. Structures were fully optimized at the UHF/6-31G* or UHF/STO-3G levels, and some of the calculations on [Formula: see text] were expanded with single point MP2/6-31G*//UHF/6-31G* computations. The C4H8+ radical cation, having a structure similar to that of 1-butene, is more stable than the separated fragments: 183 kj mol−1 lower in energy than the sum of the energies of the allyl cation and the methyl radical, and 385 kJ mol−1 lower than the sum of the energies of an allyl radical and a methyl cation, at the MP2/6-31G* level. The corresponding values at the UHF/STO-3G level are 276 and 415 kj mol−1, respectively. There is less bonding interaction between the allyl and tert-butyl moieties in [Formula: see text] The summation of the energies of the allyl radical and tert-butyl cation is 123 kj mol−1 lower than the summation of the energies of the allyl cation and tert-butyl radical, and 115 kJ mol−1 higher in energy than the bonded radical cation [Formula: see text] at the UHF/STO-3G level. These calculated values are compared with thermochemical data and with experimental results on the cleavage of these, and related, radical cations. Key words: radical cation, cleavage, ab initio calculations, electron transfer, photochemistry.


1991 ◽  
Vol 69 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Donald R. Arnold ◽  
Laurie J. Lamont ◽  
Allyson L. Perrott

The reactivity of the radical cations of methyl 2,2-diphenylcyclohexyl ether (7), 6,6-diphenyl-1,4-dioxaspiro[4.5]decane (8), methyl cis- and trans-2-phenylcyclohexyl ether (9cis and trans), and 6-phenyl-1,4-dioxaspiro[4.5]decane (10), generated by photosensitized (electron transfer) irradiation, has been studied. Solutions of the ethers and acetals in acetonitrile–methanol (3:1), with 1,4-dicyanobenzene (2) serving as the electron acceptor, were irradiated with a medium-pressure mercury vapour lamp through Pyrex. The diphenyl derivatives 7 and 8 were reactive; 7 gave 6,6-diphenylhexanal dimethyl acetal (11) and 8 gave 2-methoxy-2-(5,5-diphenylpentyl)-1,3-dioxolane (12). These are the products expected from the intermediate 1,6-radical cation, formed upon carbon–carbon bond cleavage of the cyclic radical cation. The monophenyl derivatives 9cis and trans and 10 were stable under these irradiation conditions. The mechanism for the carbon–carbon bond cleavage and for the cis–trans isomerization is discussed. An explanation, based upon conformation, is offered for the lack of reactivity of 9 and 10. Molecular mechanics (MM2) calculations were used to determine the preferred conformation of 9cis and trans, and 10. Key words: photosensitization, electron transfer, radical cation, carbon–carbon bond cleavage, conformation.


1987 ◽  
Vol 65 (9) ◽  
pp. 2312-2314 ◽  
Author(s):  
Donald R. Arnold ◽  
Shelley A. Mines

The photosensitized (electron transfer) irradiation of several conjugated 1,1-diphenyl alkenes, in acetonitrile with 1,4-dicyanobenzene or 1-cyanonapthalene as electron accepting sensitizer and 2,6-lutidine as base, leads essentially quantitatively to tautomerization to the less stable unconjugated isomer(s). The proposed mechanism for this reaction involves formation of the alkene radical cation and sensitizer radical anion followed by deprotonation of the radical cation, reduction of the resulting radical to the ambident anion by back electron transfer from the radical anion, and reprotonation. There are several steps in this mechanism that could control the ratio of isomers. Evidence is provided that, at least in some cases, it is the relative rate of deprotonation from the isomeric radical cations that is the determining factor. This rate is influenced by the conformation of the radical cation; the carbon–hydrogen bond involved in the deprotonation step must overlap with the singly occupied molecular orbital.


1995 ◽  
Vol 73 (4) ◽  
pp. 522-530 ◽  
Author(s):  
Donald R. Arnold ◽  
Xinyao Du ◽  
Huub J.P. de Lijser

The structure and reactivity of the radical cation of (+)-2-carene ((1S,6R)-3,7,7-trimethyl-cis-bicyclo[4.1.0]hept-2-ene (3)) have been studied. The radical cation was generated by photoinduced single electron transfer to the first electronically excited singlet state of 1,4-dicyanobenzene in acetonitrile–methanol (3:1). The 1:1:1 (methanol:2-carene:1,4-dicyanobenzene) adducts were formed: trans-3-(4-cyanophenyl)-4-(1-methoxy-1-methylethyl)-1-methylcyclohexene(14), and cis- (15) and trans-3-(4-cyanophenyl)-6-(1-methoxy-1-methylethyl)-3-methylcyclohexene (16) in a combined yield of 80%. The efficiency of the reaction and the yield of products were increased by the addition of biphenyl, serving as a codonor. These photo-NOCAS adducts formally result from cleavage of the three-membered ring of the 2-carene radical cation, at the C1—C7 bond, forming the tertiary carbocation and allylic radical. Reaction of the cation with methanol and coupling of the allylic radical with the 1,4-dicyanobenzene radical anion at the ipso position, followed by loss of cyanide ion, completes the sequence. There was no evidence for cleavage of the C1—C6 bond under these conditions; however, when the irradiation was carried out in acetonitrile (no methanol) the (+)-2-carene was partially racemized. Racemization is indicative of C1—C6 bond cleavage. The results of abinitio molecular orbital calculations (STO-3G) provide insight into the extent of C1—C7 bond cleavage in the radical cation. The calculated spin and charge distribution, on the 2-carene radical cation global minimum (3a+•), is consistent with the observed regiospecificity of adduct formation. Keywords: photoinduced electron transfer, radical ions, molecular orbital calculations, bond cleavage, 2-carene.


1998 ◽  
Vol 76 (9) ◽  
pp. 1238-1248 ◽  
Author(s):  
Donald R Arnold ◽  
Kimberly A McManus

The photochemical nucleophile-olefin combination, aromatic substitution (photo-NOCAS) reaction of methanol, 7-methyl-3-methylene-1,6-octadiene ( β-myrcene, 1), and 1,4-dicyanobenzene yields five 1:1:1 adducts:cis-2-(4-cyanophenyl)-4-(1-methoxy-1-methylethyl)-1-methylenecyclohexane (15), trans-2-(4-cyanophenyl)-4-(1-methoxy-1-methylethyl)-1-methylenecyclohexane (16), 1-(4-cyanophenylmethyl)-4-(1-methoxy-1-methylethyl)cyclohexene (17), 4-[4-methoxy-3,3-dimethylcyclohex-(E)-1-ylidenyl]methylbenzonitrile (18), and 4-(1-vinyl-4-trans-methoxy-3,3-dimethylcyclohexyl)benzonitrile (19). All of these adducts are cyclic; variation in the product ratio as a function of methanol concentration indicates cyclization is occurring, 1,6-endo, with both the initially formed radical cation and with the intermediate β-alkoxyalkyl radicals. Evidence based upon comparison of the ionization and oxidation potential of β-myrcene with model alkenes and with conjugated dienes indicates the initial electron transfer involves the trisubstituted mono alkene moiety; the diene moiety, mono-substituted at a nodal position, has a higher oxidation potential. High-level ab initio molecular orbital calculations (MP2/6-31G*//HF/6-31G*) provide useful information regarding the nature (relative energies and charge and spin distribution) of the intermediate radical cations, which supports the proposed reaction mechanism. Key words: photoinduced electron transfer, radicals, radical cations, β-myrcene, cyclization.


Sign in / Sign up

Export Citation Format

Share Document