Regulation of nitrogenase in the photosynthetic bacteriumRhodobacter sphaeroidescontainingdraTGandnifHDKgenes fromRhodobacter capsulatus

2001 ◽  
Vol 47 (3) ◽  
pp. 206-212 ◽  
Author(s):  
Alexander F Yakunin ◽  
Alexander S Fedorov ◽  
Tatyana V Laurinavichene ◽  
Vadim M Glaser ◽  
Nikolay S Egorov ◽  
...  

The photosynthetic bacteria Rhodobacter capsulatus and Rhodospirillum rubrum regulate their nitrogenase activity by the reversible ADP-ribosylation of nitrogenase Fe-protein in response to ammonium addition or darkness. This regulation is mediated by two enzymes, dinitrogenase reductase ADP-ribosyl transferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG). Recently, we demonstrated that another photosynthetic bacterium, Rhodobacter sphaeroides, appears to have no draTG genes, and no evidence of Fe-protein ADP-ribosylation was found in this bacterium under a variety of growth and incubation conditions. Here we show that four different strains of Rba. sphaeroides are incapable of modifying Fe-protein, whereas four out of five Rba. capsulatus strains possess this ability. Introduction of Rba. capsulatus draTG and nifHDK (structural genes for nitrogenase proteins) into Rba. sphaeroides had no effect on in vivo nitrogenase activity and on nitrogenase switch-off by ammonium. However, transfer of draTG from Rba. capsulatus was sufficient to confer on Rba. sphaeroides the ability to reversibly modify the nitrogenase Fe-protein in response to either ammonium addition or darkness. These data suggest that Rba. sphaeroides, which lacks DRAT and DRAG, possesses all the elements necessary for the transduction of signals generated by ammonium or darkness to these proteins.Key words: nitrogenase regulation, nitrogenase modification, photosynthetic bacteria.

2001 ◽  
Vol 183 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Yan Ma ◽  
Paul W. Ludden

ABSTRACT Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria.Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of thenifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-32P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-14C]NAD individually upon UV irradiation, but most 14C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-14C]NAD suggested that Arg 101 is not absolutely required for NAD binding.


1999 ◽  
Vol 181 (7) ◽  
pp. 1994-2000 ◽  
Author(s):  
Alexander F. Yakunin ◽  
Tatyana V. Laurinavichene ◽  
Anatoly A. Tsygankov ◽  
Patrick C. Hallenbeck

ABSTRACT The photosynthetic bacterium Rhodobacter capsulatus has been shown to regulate its nitrogenase by covalent modification via the reversible ADP-ribosylation of Fe protein in response to darkness or the addition of external NH4 +. Here we demonstrate the presence of ADP-ribosylated Fe protein under a variety of steady-state growth conditions. We examined the modification of Fe protein and nitrogenase activity under three different growth conditions that establish different levels of cellular nitrogen: batch growth with limiting NH4 +, where the nitrogen status is externally controlled; batch growth on relatively poor nitrogen sources, where the nitrogen status is internally controlled by assimilatory processes; and continuous culture. When cultures were grown to stationary phase with different limiting concentrations of NH4 +, the ADP-ribosylation state of Fe protein was found to correlate with cellular nitrogen status. Additionally, actively growing cultures (grown with N2 or glutamate), which had an intermediate cellular nitrogen status, contained a portion of their Fe protein in the modified state. The correlation between cellular nitrogen status and ADP-ribosylation state was corroborated with continuous cultures grown under various degrees of nitrogen limitation. These results show that in R. capsulatus the modification system that ADP-ribosylates nitrogenase in the short term in response to abrupt changes in the environment is also capable of modifying nitrogenase in accordance with long-term cellular conditions.


2000 ◽  
Vol 182 (4) ◽  
pp. 983-992 ◽  
Author(s):  
Yaoping Zhang ◽  
Edward L. Pohlmann ◽  
Paul W. Ludden ◽  
Gary P. Roberts

ABSTRACT Nitrogen fixation is tightly regulated in Rhodospirillum rubrum at two different levels: transcriptional regulation ofnif expression and posttranslational regulation of dinitrogenase reductase by reversible ADP-ribosylation catalyzed by the DRAT-DRAG (dinitrogenase reductase ADP-ribosyltransferase–dinitrogenase reductase-activating glycohydrolase) system. We report here the characterization ofglnB, glnA, and nifA mutants and studies of their relationship to the regulation of nitrogen fixation. Two mutants which affect glnB (structural gene for PII) were constructed. While PII-Y51F showed a lower nitrogenase activity than that of wild type, a PIIdeletion mutant showed very little nif expression. This effect of PII on nif expression is apparently the result of a requirement of PII for NifA activation, whose activity is regulated by NH4 + in R. rubrum. The modification of glutamine synthetase (GS) in theseglnB mutants appears to be similar to that seen in wild type, suggesting that a paralog of PII might exist inR. rubrum and regulate the modification of GS. PII also appears to be involved in the regulation of DRAT activity, since an altered response to NH4 + was found in a mutant expressing PII-Y51F. The adenylylation of GS plays no significant role in nif expression or the ADP-ribosylation of dinitrogenase reductase, since a mutant expressing GS-Y398F showed normal nitrogenase activity and normal modification of dinitrogenase reductase in response to NH4 + and darkness treatments.


2002 ◽  
Vol 184 (15) ◽  
pp. 4081-4088 ◽  
Author(s):  
Alexander F. Yakunin ◽  
Patrick C. Hallenbeck

ABSTRACT Rhodobacter capsulatus possesses two genes potentially coding for ammonia transporters, amtB and amtY. In order to better understand their role in the physiology of this bacterium and their possible significance in nitrogen fixation, we created single-knockout mutants. Strains mutated in either amtB or amtY did not show a growth defect under any condition tested and were still capable of taking up ammonia at nearly wild-type rates, but an amtB mutant was no longer capable of transporting methylamine. The amtB strain but not the amtY strain was also totally defective in carrying out ADP-ribosylation of Fe-protein or the switch-off of in vivo nitrogenase activity in response to NH4 + addition. ADP-ribosylation in response to darkness was unaffected in amtB and amtBY strains, and glutamine synthetase activity was normally regulated in these strains in response to ammonium addition, suggesting that one role of AmtB is to function as an ammonia sensor for the processes that regulate nitrogenase activity.


2000 ◽  
Vol 182 (13) ◽  
pp. 3681-3687 ◽  
Author(s):  
Cale M. Halbleib ◽  
Yaoping Zhang ◽  
Gary P. Roberts ◽  
Paul W. Ludden

ABSTRACT The redox state of nitrogenase Fe protein is shown to affect regulation of ADP-ribosylation in Klebsiella pneumoniaestrains transformed by plasmids carrying dra genes fromRhodospirillum rubrum. The dra operon encodes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase, enzymes responsible for the reversible inactivation, via ADP-ribosylation, of nitrogenase Fe protein in R. rubrum. In bacteria containing thedra operon in their chromosomes, inactivation occurs in response to energy limitation or nitrogen sufficiency. Thedra gene products, expressed at a low level in K. pneumoniae, enable transformants to reversibly ADP-ribosylate nitrogenase Fe protein in response to the presence of fixed nitrogen. The activities of both regulatory enzymes are regulated in vivo as described in R. rubrum. Genetic perturbations of the nitrogenase electron transport chain were found to affect the rate of inactivation of Fe protein. Strains lacking the electron donors to Fe protein (NifF or NifJ) were found to inactivate Fe protein more quickly than a strain with wild-type background. Deletion ofnifD, which encodes a subunit of nitrogenase MoFe protein, was found to result in a slower inactivation response. No variation was found in the reactivation responses of these strains. It is concluded that the redox state of the Fe protein contributes to the regulation of the ADP-ribosylation of Fe protein.


1984 ◽  
Vol 224 (3) ◽  
pp. 961-969 ◽  
Author(s):  
T D Paul ◽  
P W Ludden

Adenine nucleotide pools were measured in Rhodospirillum rubrum cultures that contained nitrogenase. The average energy charge [([ATP] + 1/2[ADP])/([ATP] + [ADP] + [AMP])] was found to be 0.66 and 0.62 in glutamate-grown and N-limited cultures respectively. Treatment of glutamate-grown cells with darkness, ammonia, glutamine, carbonyl cyanide m-chlorophenylhydrazone, or phenazine methosulphate resulted in perturbations in the adenine nucleotide pools, and led to loss of whole-cell nitrogenase activity and modification in vivo of the Fe protein. Treatment of N-limited cells resulted in similar changes in adenine nucleotide pools but not enzyme modification. No correlations were found between changes in adenine nucleotide pools or ratios of these pools and switch-off of nitrogenase activity by Fe protein modification in vivo. Phenazine methosulphate inhibited whole-cell activity at low concentrations. The effect on nitrogenase activity was apparently independent of Fe protein modification.


2000 ◽  
Vol 182 (10) ◽  
pp. 2831-2837 ◽  
Author(s):  
Sylvie Elsen ◽  
Wanda Dischert ◽  
Annette Colbeau ◽  
Carl E. Bauer

ABSTRACT Purple photosynthetic bacteria are capable of generating cellular energy from several sources, including photosynthesis, respiration, and H2 oxidation. Under nutrient-limiting conditions, cellular energy can be used to assimilate carbon and nitrogen. This study provides the first evidence of a molecular link for the coregulation of nitrogenase and hydrogenase biosynthesis in an anoxygenic photosynthetic bacterium. We demonstrated that molybdenum nitrogenase biosynthesis is under the control of the RegB-RegA two-component regulatory system in Rhodobacter capsulatus. Footprint analyses and in vivo transcription studies showed that RegA indirectly activates nitrogenase synthesis by binding to and activating the expression of nifA2, which encodes one of the two functional copies of the nif-specific transcriptional activator, NifA. Expression of nifA2 but notnifA1 is reduced in the reg mutants up to eightfold under derepressing conditions and is also reduced under repressing conditions. Thus, although NtrC is absolutely required fornifA2 expression, RegA acts as a coactivator ofnifA2. We also demonstrated that in regmutants, [NiFe]hydrogenase synthesis and activity are increased up to sixfold. RegA binds to the promoter of the hydrogenase gene operon and therefore directly represses its expression. Thus, the RegB-RegA system controls such diverse processes as energy-generating photosynthesis and H2 oxidation, as well as the energy-demanding processes of N2 fixation and CO2 assimilation.


1999 ◽  
Vol 181 (5) ◽  
pp. 1698-1702 ◽  
Author(s):  
Kitai Kim ◽  
Yaoping Zhang ◽  
Gary P. Roberts

ABSTRACT In Rhodospirillum rubrum, nitrogenase activity is regulated posttranslationally through the ADP-ribosylation of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase (DRAT). Several DRAT variants that are altered both in the posttranslational regulation of DRAT activity and in the ability to recognize variants of dinitrogenase reductase have been found. This correlation suggests that these two properties are biochemically connected.


2007 ◽  
Vol 190 (5) ◽  
pp. 1588-1594 ◽  
Author(s):  
Pier-Luc Tremblay ◽  
Patrick C. Hallenbeck

ABSTRACT A series of Rhodobacter capsulatus AmtB variants were created and assessed for effects on ammonia transport, formation of AmtB-GlnK complexes, and regulation of nitrogenase activity and NifH ADP-ribosylation. Confirming previous reports, H193 and H342 were essential for ammonia transport and the replacement of aspartate 185 with glutamate reduced ammonia transport. Several amino acid residues, F131, D334, and D335, predicted to be critical for AmtB activity, are shown here for the first time by mutational analysis to be essential for transport. Alterations of the C-terminal tail reduced methylamine transport, prevented AmtB-GlnK complex formation, and abolished nitrogenase switch-off and NifH ADP-ribosylation. On the other hand, D185E, with a reduced level of transport, was capable of forming an ammonium-induced complex with GlnK and regulating nitrogenase. This reinforces the notions that ammonia transport is not sufficient for nitrogenase regulation and that formation of an AmtB-GlnK complex is necessary for these processes. However, some transport-incompetent AmtB variants, i.e., F131A, H193A, and H342A, form ammonium-induced complexes with GlnK but fail to properly regulate nitrogenase. These results show that formation of an AmtB-GlnK complex is insufficient in itself for nitrogenase regulation and suggest that partial ammonia transport or occupation of the pore by ammonia is essential for this function.


1998 ◽  
Vol 180 (23) ◽  
pp. 6392-6395 ◽  
Author(s):  
Alexander F. Yakunin ◽  
Patrick C. Hallenbeck

ABSTRACT The photosynthetic bacterium Rhodobacter capsulatus has been shown to carry out nitrogenase “switch-off,” a rapid, reversible inhibition of in vivo activity. Here, we demonstrate that highly nitrogen-limited cultures of both the wild-type strain and adraT draG mutant are capable of nitrogenase switch-off while moderately nitrogen-limited cultures show instead a “magnitude” response, with a decrease in in vivo nitrogenase activity that is proportional to the amount of added NH4 +.


Sign in / Sign up

Export Citation Format

Share Document