scholarly journals Role of the Dinitrogenase Reductase Arginine 101 Residue in Dinitrogenase Reductase ADP-Ribosyltransferase Binding, NAD Binding, and Cleavage

2001 ◽  
Vol 183 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Yan Ma ◽  
Paul W. Ludden

ABSTRACT Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria.Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of thenifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-32P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-14C]NAD individually upon UV irradiation, but most 14C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-14C]NAD suggested that Arg 101 is not absolutely required for NAD binding.

1999 ◽  
Vol 181 (5) ◽  
pp. 1698-1702 ◽  
Author(s):  
Kitai Kim ◽  
Yaoping Zhang ◽  
Gary P. Roberts

ABSTRACT In Rhodospirillum rubrum, nitrogenase activity is regulated posttranslationally through the ADP-ribosylation of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase (DRAT). Several DRAT variants that are altered both in the posttranslational regulation of DRAT activity and in the ability to recognize variants of dinitrogenase reductase have been found. This correlation suggests that these two properties are biochemically connected.


1997 ◽  
Vol 322 (3) ◽  
pp. 829-832 ◽  
Author(s):  
Agneta NORÉN ◽  
Abdelhamid SOLIMAN ◽  
Stefan NORDLUND

The role of NAD+ in the metabolic regulation of nitrogenase, the ‘switch-off’ effect, in Rhodospirillum rubrum has been studied. We now show that the decrease in nitrogenase activity upon addition of NAD+ to R. rubrum is due to modification of dinitrogenase reductase. There was no effect when NAD+ was added to a mutant of R. rubrumdevoid of dinitrogenase reductase ADP-ribosyltransferase, indicating that NAD+ ‘switch-off’ is an effect of the same regulatory system as ammonium ‘switch-off’. We also show that oxaloacetate and α-ketoglutarate function as ‘switch-off’ effectors. On the other hand β-hydroxybutyrate has the opposite effect by shortening the ‘switch-off’ period. Furthermore, by using an inhibitor of glutamate synthase the role of this enzyme in ‘switch-off’ was investigated. The results are discussed in relation to our proposal that changes in the concentration of NAD+ are involved in initiating ‘switch-off’.


2000 ◽  
Vol 182 (4) ◽  
pp. 983-992 ◽  
Author(s):  
Yaoping Zhang ◽  
Edward L. Pohlmann ◽  
Paul W. Ludden ◽  
Gary P. Roberts

ABSTRACT Nitrogen fixation is tightly regulated in Rhodospirillum rubrum at two different levels: transcriptional regulation ofnif expression and posttranslational regulation of dinitrogenase reductase by reversible ADP-ribosylation catalyzed by the DRAT-DRAG (dinitrogenase reductase ADP-ribosyltransferase–dinitrogenase reductase-activating glycohydrolase) system. We report here the characterization ofglnB, glnA, and nifA mutants and studies of their relationship to the regulation of nitrogen fixation. Two mutants which affect glnB (structural gene for PII) were constructed. While PII-Y51F showed a lower nitrogenase activity than that of wild type, a PIIdeletion mutant showed very little nif expression. This effect of PII on nif expression is apparently the result of a requirement of PII for NifA activation, whose activity is regulated by NH4 + in R. rubrum. The modification of glutamine synthetase (GS) in theseglnB mutants appears to be similar to that seen in wild type, suggesting that a paralog of PII might exist inR. rubrum and regulate the modification of GS. PII also appears to be involved in the regulation of DRAT activity, since an altered response to NH4 + was found in a mutant expressing PII-Y51F. The adenylylation of GS plays no significant role in nif expression or the ADP-ribosylation of dinitrogenase reductase, since a mutant expressing GS-Y398F showed normal nitrogenase activity and normal modification of dinitrogenase reductase in response to NH4 + and darkness treatments.


1989 ◽  
pp. 18-25
Author(s):  
Paul W. Ludden ◽  
Scott A. Murrell ◽  
Robert G. Lowery ◽  
Wayne P. Fitzmaurice ◽  
Mark R. Pope ◽  
...  

2001 ◽  
Vol 47 (3) ◽  
pp. 206-212 ◽  
Author(s):  
Alexander F Yakunin ◽  
Alexander S Fedorov ◽  
Tatyana V Laurinavichene ◽  
Vadim M Glaser ◽  
Nikolay S Egorov ◽  
...  

The photosynthetic bacteria Rhodobacter capsulatus and Rhodospirillum rubrum regulate their nitrogenase activity by the reversible ADP-ribosylation of nitrogenase Fe-protein in response to ammonium addition or darkness. This regulation is mediated by two enzymes, dinitrogenase reductase ADP-ribosyl transferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG). Recently, we demonstrated that another photosynthetic bacterium, Rhodobacter sphaeroides, appears to have no draTG genes, and no evidence of Fe-protein ADP-ribosylation was found in this bacterium under a variety of growth and incubation conditions. Here we show that four different strains of Rba. sphaeroides are incapable of modifying Fe-protein, whereas four out of five Rba. capsulatus strains possess this ability. Introduction of Rba. capsulatus draTG and nifHDK (structural genes for nitrogenase proteins) into Rba. sphaeroides had no effect on in vivo nitrogenase activity and on nitrogenase switch-off by ammonium. However, transfer of draTG from Rba. capsulatus was sufficient to confer on Rba. sphaeroides the ability to reversibly modify the nitrogenase Fe-protein in response to either ammonium addition or darkness. These data suggest that Rba. sphaeroides, which lacks DRAT and DRAG, possesses all the elements necessary for the transduction of signals generated by ammonium or darkness to these proteins.Key words: nitrogenase regulation, nitrogenase modification, photosynthetic bacteria.


2004 ◽  
Vol 385 (1) ◽  
pp. 309-317 ◽  
Author(s):  
Zhefeng ZHAO ◽  
Joanna GRUSZCZYNSKA-BIEGALA ◽  
Anna ZOLKIEWSKA

The extracellular domain of integrin α7 is ADP-ribosylated by an arginine-specific ecto-ADP-ribosyltransferase after adding exogenous NAD+ to intact C2C12 skeletal muscle cells. The effect of ADP-ribosylation on the structure or function of integrin α7β1 has not been explored. In the present study, we show that ADP-ribosylation of integrin α7 takes place exclusively in differentiated myotubes and that this post-translational modification modulates the affinity of α7β1 dimer for its ligand, laminin. ADP-ribosylation in the 37-kDa ‘stalk’ region of α7 that takes place at micromolar NAD+ concentrations increases the binding of the α7β1 dimer to laminin. Increased in vitro binding of integrin α7β1 to laminin after ADP-ribosylation of the 37-kDa fragment of α7 requires the presence of Mn2+ and it is not observed in the presence of Mg2+. In contrast, ADP-ribosylation of the 63-kDa N-terminal region comprising the ligand-binding site of α7 that occurs at approx. 100 μM NAD+ inhibits the binding of integrin α7β1 to laminin. Furthermore, incubation of C2C12 myotubes with NAD+ increases the expression of an epitope on integrin β1 subunit recognized by monoclonal antibody 9EG7. We discuss our results based on the current models of integrin activation. We also hypothesize that ADP-ribosylation may represent a mechanism of regulation of integrin α7β1 function in myofibres in vivo when the continuity of the membrane is compromised and NAD+ is available as a substrate for ecto-ADP-ribosylation.


2017 ◽  
Vol 399 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Monika B. Dolinska ◽  
Yuri V. Sergeev

AbstractTyrosinase, a melanosomal glycoenzyme, catalyzes initial steps of the melanin biosynthesis. While glycosylation was previously studiedin vivo, we present three recombinant mutant variants of human tyrosinase, which were obtained using multiple site-directed mutagenesis, expressed in insect larvae, purified and characterized biochemically. The mutagenesis demonstrated the reduced protein expression and enzymatic activity due to possible loss of protein stability and protein degradation. However, the complete deglycosylation of asparagine residuesin vitro, including the residue in position 371, interrupts tyrosinase function, which is consistent with a melanin loss in oculocutaneous albinism type 1 (OCA1) patients.


1987 ◽  
Author(s):  
G A Vehar ◽  
K M Tate ◽  
D L Higgins ◽  
W E Holmes ◽  
H L Heyneker

The significance of the cleavage at arginine-275 of human t-PA has been the subject of debate. It has been reported, as expected for a member of the serine protease family, that the single chain form is a zymogen and that generation of catalytic activity is dependent upon cleavage at arginine-275. Other groups, in contrast, have found considerable enzyme activity associated with the one-chain form of t-PA. To clarify the functional significance of this proteolysis and circumvent cleavage of one-chain t-PA by itself or plasmin, site-directed mutagenesis was employed to change the codon of arginine-275 to specify a glutamic acid. The resulting plasmid was used to transfect CHO cells. The single chain mutant [Glu-275 t-PA] was expressed in CHO cells and the protein purified by conventional techniques. The mutant enzyme could be converted to the two-chain form by V8 protease, but not by plasmin. Glu-275 t-PA was 8 times less active in the cleavage of a tripeptide substrate and 20-50 times less active in the activation of plasminogen in the absence of firbrin(ogen) than its two-chain form. In the presence of fibrin(ogen), in contrast, the one and two-chain forms of Glu-275 t-PA were equal in their ability to activate plasminogen in the presence of fibrin(ogen). The activity in these assays was equal to the activity of wild type t-PA. In addition, it was observed that fibrin bound considerably more of the one-chain form of t-PA than the two chain forms of t-PA and the Glu-275 mutant. The one and two-chain forms of the wild type and mutated t-PA were found to slowly form complexes with plasma protease inhibitors in vitro, although the one-chain forms were less reactive with alpha-2-macroglobulin. It can be concluded that the one-chain form of t-PA appears to be fully functional under physiologic conditions and has an increased affinity for fibrin compared to two-chain t-PA.


1999 ◽  
Vol 19 (4) ◽  
pp. 3167-3176 ◽  
Author(s):  
Magali Kitzmann ◽  
Marie Vandromme ◽  
Valerie Schaeffer ◽  
Gilles Carnac ◽  
Jean-Claude Labbé ◽  
...  

ABSTRACT We have examined the role of protein phosphorylation in the modulation of the key muscle-specific transcription factor MyoD. We show that MyoD is highly phosphorylated in growing myoblasts and undergoes substantial dephosphorylation during differentiation. MyoD can be efficiently phosphorylated in vitro by either purified cdk1-cyclin B or cdk1 and cdk2 immunoprecipitated from proliferative myoblasts. Comparative two-dimensional tryptic phosphopeptide mapping combined with site-directed mutagenesis revealed that cdk1 and cdk2 phosphorylate MyoD on serine 200 in proliferative myoblasts. In addition, when the seven proline-directed sites in MyoD were individually mutated, only substitution of serine 200 to a nonphosphorylatable alanine (MyoD-Ala200) abolished the slower-migrating hyperphosphorylated form of MyoD, seen either in vitro after phosphorylation by cdk1-cyclin B or in vivo following overexpression in 10T1/2 cells. The MyoD-Ala200 mutant displayed activity threefold higher than that of wild-type MyoD in transactivation of an E-box-dependent reporter gene and promoted markedly enhanced myogenic conversion and fusion of 10T1/2 fibroblasts into muscle cells. In addition, the half-life of MyoD-Ala200 protein was longer than that of wild-type MyoD, substantiating a role of Ser200 phosphorylation in regulating MyoD turnover in proliferative myoblasts. Taken together, our data show that direct phosphorylation of MyoD Ser200 by cdk1 and cdk2 plays an integral role in compromising MyoD activity during myoblast proliferation.


Sign in / Sign up

Export Citation Format

Share Document