posttranslational regulation
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 31)

H-INDEX

44
(FIVE YEARS 5)

2021 ◽  
Vol 118 (51) ◽  
pp. e2113060118
Author(s):  
Xing Liu ◽  
Dhiraj Acharya ◽  
Eric Krawczyk ◽  
Chase Kangas ◽  
Michaela U. Gack ◽  
...  

Herpes simplex virus (HSV) infection relies on immediate early proteins that initiate viral replication. Among them, ICP0 is known, for many years, to facilitate the onset of viral gene expression and reactivation from latency. However, how ICP0 itself is regulated remains elusive. Through genetic analyses, we identify that the viral γ134.5 protein, an HSV virulence factor, interacts with and prevents ICP0 from proteasomal degradation. Furthermore, we show that the host E3 ligase TRIM23, recently shown to restrict the replication of HSV-1 (and certain other viruses) by inducing autophagy, triggers the proteasomal degradation of ICP0 via K11- and K48-linked ubiquitination. Functional analyses reveal that the γ134.5 protein binds to and inactivates TRIM23 through blockade of K27-linked TRIM23 autoubiquitination. Deletion of γ134.5 or ICP0 in a recombinant HSV-1 impairs viral replication, whereas ablation of TRIM23 markedly rescues viral growth. Herein, we show that TRIM23, apart from its role in autophagy-mediated HSV-1 restriction, down-regulates ICP0, whereas viral γ134.5 functions to disable TRIM23. Together, these results demonstrate that posttranslational regulation of ICP0 by virus and host factors determines the outcome of HSV-1 infection.


2021 ◽  
Vol 118 (37) ◽  
pp. e2106908118
Author(s):  
Yu-Pu Jing ◽  
Xinpeng Wen ◽  
Lunjie Li ◽  
Shanjing Zhang ◽  
Ci Zhang ◽  
...  

Vitellogenin receptor (VgR) plays a pivotal role in ovarian vitellogenin (Vg) uptake and vertical transmission of pathogenic microbes and Wolbachia symbionts. However, the regulatory mechanisms of VgR action as an endocytic receptor and translocation from oocyte cytoplasm to the membrane remain poorly understood. Here, by using the migratory locust Locusta migratoria as a model system, we report that juvenile hormone (JH) promotes VgR phosphorylation at Ser1361 in the second EGF-precursor homology domain. A signaling cascade including GPCR, PLC, extracellular calcium, and PKC-ι is involved in JH-stimulated VgR phosphorylation. This posttranslational regulation is a prerequisite for VgR binding to Vg on the external surface of the oocyte membrane and subsequent VgR/Vg endocytosis. Acidification, a condition in endosomes, induces VgR dephosphorylation along with the dissociation of Vg from VgR. Phosphorylation modification is also required for VgR recycling from oocyte cytoplasm to the membrane. Additionally, VgR phosphorylation and its requirement for Vg uptake and VgR recycling are evolutionarily conserved in other representative insects including the cockroach Periplaneta americana and the cotton bollworm Helicoverpa armigera. This study fills an important knowledge gap of low-density lipoprotein receptors in posttranslational regulation, endocytosis, and intracellular recycling.


mSphere ◽  
2021 ◽  
Author(s):  
Heather N’te Inzalaco ◽  
William H. Tepp ◽  
Chase Fredrick ◽  
Marite Bradshaw ◽  
Eric A. Johnson ◽  
...  

Botulinum neurotoxin (BoNT) is a public health and bioterrorism concern as well as an important and widely used pharmaceutical, yet the regulation of its synthesis by BoNT-producing clostridia is not well understood. This paper highlights the role of environmentally controlled posttranslational regulatory mechanisms influencing processing and stability of biologically active BoNTs produced by C. botulinum .


Author(s):  
Weiqi Zhang ◽  
Xu Liu ◽  
Yicheng Zhu ◽  
Xinnan Liu ◽  
Yunting Gu ◽  
...  

2021 ◽  
Vol 90 (1) ◽  
pp. 659-679
Author(s):  
Marc M. Schumacher ◽  
Russell A. DeBose-Boyd

The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain–containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.


2021 ◽  
Author(s):  
Zhi Huang ◽  
Kui Zhai ◽  
Qiulian Wu ◽  
Xiaoguang Fang ◽  
Qian Huang ◽  
...  

Glioblastoma (GBM) is the most lethal brain tumor containing glioma stem cells (GSCs) that promote malignant growth and therapeutic resistance. The self-renewal and tumorigenic potential of GSCs are maintained by core stem cell transcription factors including SOX2. Defining the posttranslational regulation of SOX2 may offer new insights into GSC biology and potential therapeutic opportunity. Here, we discover that HAUSP stabilizes SOX2 through deubiquitination to maintain GSC self-renewal and tumorigenic potential. HAUSP is preferentially expressed in GSCs in perivascular niches in GBMs. Disrupting HAUSP by shRNA or its inhibitor P22077 promoted SOX2 degradation, induced GSC differentiation, impaired GSC tumorigenic potential, and suppressed GBM tumor growth. Importantly, pharmacological inhibition of HAUSP synergized with radiation to inhibit GBM growth and extended animal survival, indicating that targeting HAUSP may overcome GSC-mediated radioresistance. Our findings reveal an unappreciated crucial role of HAUSP in the GSC maintenance and provide a promising target for developing effective anti-GSC therapeutics to improve GBM treatment.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3528
Author(s):  
Silvie Rimpelová ◽  
Michal Kolář ◽  
Hynek Strnad ◽  
Tomáš Ruml ◽  
Libor Vítek ◽  
...  

Statins have been widely used for the treatment of hypercholesterolemia due to their ability to inhibit HMG-CoA reductase, the rate-limiting enzyme of de novo cholesterol synthesis, via the so-called mevalonate pathway. However, their inhibitory action also causes depletion of downstream intermediates of the pathway, resulting in the pleiotropic effects of statins, including the beneficial impact in the treatment of cancer. In our study, we compared the effect of all eight existing statins on the expression of genes, the products of which are implicated in cancer inhibition and suggested the molecular mechanisms of their action in epigenetic and posttranslational regulation, and in cell-cycle arrest, death, migration, or invasion of the cancer cells.


2021 ◽  
Vol 7 (15) ◽  
pp. eabe2261
Author(s):  
Su H. Park ◽  
Ka-wing Fong ◽  
Jung Kim ◽  
Fang Wang ◽  
Xiaodong Lu ◽  
...  

Forkhead box protein A1 (FOXA1) is essential for androgen-dependent prostate cancer (PCa) growth. However, how FOXA1 levels are regulated remains elusive and its therapeutic targeting proven challenging. Here, we report FOXA1 as a nonhistone substrate of enhancer of zeste homolog 2 (EZH2), which methylates FOXA1 at lysine-295. This methylation is recognized by WD40 repeat protein BUB3, which subsequently recruits ubiquitin-specific protease 7 (USP7) to remove ubiquitination and enhance FOXA1 protein stability. They functionally converge in regulating cell cycle genes and promoting PCa growth. FOXA1 is a major therapeutic target of the inhibitors of EZH2 methyltransferase activities in PCa. FOXA1-driven PCa growth can be effectively mitigated by EZH2 enzymatic inhibitors, either alone or in combination with USP7 inhibitors. Together, our study reports EZH2-catalyzed methylation as a key mechanism to FOXA1 protein stability, which may be leveraged to enhance therapeutic targeting of PCa using enzymatic EZH2 inhibitors.


2021 ◽  
Vol 35 (5) ◽  
Author(s):  
Motoki Okui ◽  
Tatsuro Murakami ◽  
Hongxin Sun ◽  
Chiaki Ikeshita ◽  
Narisato Kanamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document