The costs of reproduction in tree swallows (Tachycineta bicolor)

1991 ◽  
Vol 69 (10) ◽  
pp. 2540-2547 ◽  
Author(s):  
Nathaniel T. Wheelwright ◽  
Joanna Leary ◽  
Caragh Fitzgerald

We investigated the effect of brood size on nestling growth and survival, parental survival, and future fecundity in tree swallows (Tachycineta bicolor) over a 4-year period (1987–1990) in an effort to understand whether reproductive trade-offs limit clutch size in birds. In addition to examining naturally varying brood sizes in a population on Kent Island, New Brunswick, Canada, we experimentally modified brood sizes, increasing or decreasing the reproductive burdens of females by two offspring. Unlike previous studies, broods of the same females were enlarged or reduced in up to 3 successive years in a search for evidence of cumulative costs of reproduction that might go undetected by a single brood manipulation. Neither observation nor experiment supported the existence of a trade-off between offspring quality and quantity, in contrast with the predictions of life-history theory. Nestling wing length, mass, and tarsus length were unrelated to brood size. Although differences between means were in the direction predicted, few differences were statistically significant, despite large sample sizes. Nestlings from small broods were no more likely to return as breeding adults than nestlings from large broods, but return rates of both groups were very low. Parental return rates were also independent of brood size, and there was no evidence of a negative effect of brood size on future fecundity (laying date, clutch size). Reproductive success, nestling size, and survival did not differ between treatments for females whose broods were manipulated in successive years. Within the range of brood sizes observed in this study, the life-history costs of feeding one or two additional nestlings in tree swallows appear to be slight and cannot explain observed clutch sizes. Costs not measured in this study, such as the production of eggs or postfledging parental care, may be more important in limiting clutch size in birds.

2016 ◽  
Vol 3 (12) ◽  
pp. 160740 ◽  
Author(s):  
Çağlar Akçay ◽  
Ádám Z. Lendvai ◽  
Mark Stanback ◽  
Mark Haussmann ◽  
Ignacio T. Moore ◽  
...  

Life-history theory predicts that optimal strategies of parental investment will depend on ecological and social factors, such as current brood value and offspring need. Parental care strategies are also likely to be mediated in part by the hypothalamic–pituitary–adrenal axis and glucocorticoid hormones. Here, we present an experiment in tree swallows ( Tachycineta bicolor ), a biparental songbird with wide geographical distribution, asking whether parental care is strategically adjusted in response to signals of offspring need and brood value and if so, whether glucocorticoids are involved in these adjustments. Using an automated playback system, we carried out playbacks of nestling begging calls specifically to females in two populations differing in their brood value: a northern population in Ontario, Canada (relatively higher brood value) and a southern population in North Carolina, USA (relatively lower brood value). We quantified female offspring provisioning rates before and during playbacks and plasma corticosterone levels (cort) once during late incubation and once immediately after playbacks. Females in both populations increased feeding rates temporarily during the first 2 h of playback but the increase was not sustained for the entire duration of playback (6 h). Cort levels from samples at the end of the playback did not differ between control females and females that received playbacks. However, females that had higher increases in cort between the incubation and nestling period had greater fledging success. These results suggest that females are able to strategically respond to offspring need, although the role of glucocorticoids in this strategic adjustment remains unclear.


2007 ◽  
Vol 363 (1490) ◽  
pp. 375-398 ◽  
Author(s):  
John R Speakman

Life-history trade-offs between components of fitness arise because reproduction entails both gains and costs. Costs of reproduction can be divided into ecological and physiological costs. The latter have been rarely studied yet are probably a dominant component of the effect. A deeper understanding of life-history evolution will only come about once these physiological costs are better understood. Physiological costs may be direct or indirect. Direct costs include the energy and nutrient demands of the reproductive event, and the morphological changes that are necessary to facilitate achieving these demands. Indirect costs may be optional ‘compensatory costs’ whereby the animal chooses to reduce investment in some other aspect of its physiology to maximize the input of resource to reproduction. Such costs may be distinguished from consequential costs that are an inescapable consequence of the reproductive event. In small mammals, the direct costs of reproduction involve increased energy, protein and calcium demands during pregnancy, but most particularly during lactation. Organ remodelling is necessary to achieve the high demands of lactation and involves growth of the alimentary tract and associated organs such as the liver and pancreas. Compensatory indirect costs include reductions in thermogenesis, immune function and physical activity. Obligatory consequential costs include hyperthermia, bone loss, disruption of sleep patterns and oxidative stress. This is unlikely to be a complete list. Our knowledge of these physiological costs is currently at best described as rudimentary. For some, we do not even know whether they are compensatory or obligatory. For almost all of them, we have no idea of exact mechanisms or how these costs translate into fitness trade-offs.


2001 ◽  
Vol 204 (8) ◽  
pp. 1491-1501 ◽  
Author(s):  
G.P. Burness ◽  
R.C. Ydenberg ◽  
P.W. Hochachka

Intra-population variation in many fitness-related traits (e.g. clutch size) is often attributed to variation in individual parental quality. One possible component of quality is the level at which each individual can expend energy while provisioning dependent young. We used breeding tree swallows (Tachycineta bicolor) to test whether adults with large, natural-sized broods and/or nestlings in good nutritional condition had relatively high daily energy expenditures (DEEs). Adults with high DEEs were predicted to have large internal organs and high metabolic capacities. We first measured the growth rate of nestlings in natural broods of five, six and seven over a 4-day period and then measured parental DEE using doubly labelled water. Adults were then dissected for analyses of body composition and to determine maximum enzyme activities in the pectoral muscle. Although the total mass gain of large broods was greater than that of small broods, parental DEE was independent of brood size. We hypothesize that adults matched their clutch size (and consequently, brood size) to their individual foraging efficiencies. When statistically controlling for the effects of brood size, in one of two years there was a positive correlation between DEE and brood mass. This suggests that among individuals rearing the same-sized broods there were reproductive benefits of a relatively high DEE. There was no correlation between either brood size or DEE and the mass of any internal organ or the metabolic capacity of the pectoral muscle.


2018 ◽  
Vol 94 (3) ◽  
pp. 1105-1115 ◽  
Author(s):  
Anna Ziomkiewicz ◽  
Szymon Wichary ◽  
Grazyna Jasienska

The Auk ◽  
2004 ◽  
Vol 121 (2) ◽  
pp. 345-353 ◽  
Author(s):  
Melissa S. Bowlin ◽  
David W. Winkler

Abstract In many avian species, including Tree Swallows (Tachycineta bicolor), females that lay eggs earlier in the season have higher fitness. It has been hypothesized that nonheritable variation in individual quality could explain how variation in laying date persists in the face of this apparently directional selection. Previous experimental work on Tree Swallows has suggested that natural variation in flight ability enables early-laying females to attain feeding rates high enough to support egg production on earlier, sparser food than later-laying females. We tested that hypothesis with standardized flights through a 9.75-m flight-performance test tunnel. One group of female swallows was tested at the height of the breeding season on 28 May regardless of their nesting phenology; another group was tested on the 11th day of incubation. Average acceleration in the tunnel was negatively correlated with clutch initiation date for the females tested on 28 May. Daily variation in ambient environmental conditions had strong effects on swallow flight performance in the tunnel, and no relationship was observed in the day-11 birds. Because natural variation in foraging performance is correlated with variation in female Tree Swallows' clutch initiation dates, flight ability appears to be a key element of individual quality in this species.


2006 ◽  
Vol 362 (1486) ◽  
pp. 1873-1886 ◽  
Author(s):  
Oliver Krüger

The interactions between brood parasitic birds and their host species provide one of the best model systems for coevolution. Despite being intensively studied, the parasite–host system provides ample opportunities to test new predictions from both coevolutionary theory as well as life-history theory in general. I identify four main areas that might be especially fruitful: cuckoo female gentes as alternative reproductive strategies, non-random and nonlinear risks of brood parasitism for host individuals, host parental quality and targeted brood parasitism, and differences and similarities between predation risk and parasitism risk. Rather than being a rare and intriguing system to study coevolutionary processes, I believe that avian brood parasites and their hosts are much more important as extreme cases in the evolution of life-history strategies. They provide unique examples of trade-offs and situations where constraints are either completely removed or particularly severe.


2009 ◽  
Vol 5 (3) ◽  
pp. 339-342 ◽  
Author(s):  
Gregory E. Blomquist

Trade-offs are central to life-history theory but difficult to document. Patterns of phenotypic and genetic correlations in rhesus macaques, Macaca mulatta —a long-lived, slow-reproducing primate—are used to test for a trade-off between female age of first reproduction and adult survival. A strong positive genetic correlation indicates that female macaques suffer reduced adult survival when they mature relatively early and implies primate senescence can be explained, in part, by antagonistic pleiotropy. Contrasts with a similar human study implicate the extension of parental effects to later ages as a potential mechanism for circumventing female life-history trade-offs in human evolution.


2013 ◽  
Vol 26 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Bruce J. Ellis ◽  
Marco Del Giudice

AbstractHow do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary–developmental theory of stress–health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.


2017 ◽  
Vol 40 ◽  
Author(s):  
Bin-Bin Chen

AbstractThe mating-related evolutionary explanation that Maestripieri et al. offer does not apply to (1) infants' positive biases toward attractive individuals and (2) adults' positive biases toward attractive infants and children. They are best understood when integrated into an evolutionary life history framework. I argue that the life history of positive biases toward attractive individuals is driven by fundamental trade-offs made throughout development.


Sign in / Sign up

Export Citation Format

Share Document