scholarly journals Strategic adjustment of parental care in tree swallows: life-history trade-offs and the role of glucocorticoids

2016 ◽  
Vol 3 (12) ◽  
pp. 160740 ◽  
Author(s):  
Çağlar Akçay ◽  
Ádám Z. Lendvai ◽  
Mark Stanback ◽  
Mark Haussmann ◽  
Ignacio T. Moore ◽  
...  

Life-history theory predicts that optimal strategies of parental investment will depend on ecological and social factors, such as current brood value and offspring need. Parental care strategies are also likely to be mediated in part by the hypothalamic–pituitary–adrenal axis and glucocorticoid hormones. Here, we present an experiment in tree swallows ( Tachycineta bicolor ), a biparental songbird with wide geographical distribution, asking whether parental care is strategically adjusted in response to signals of offspring need and brood value and if so, whether glucocorticoids are involved in these adjustments. Using an automated playback system, we carried out playbacks of nestling begging calls specifically to females in two populations differing in their brood value: a northern population in Ontario, Canada (relatively higher brood value) and a southern population in North Carolina, USA (relatively lower brood value). We quantified female offspring provisioning rates before and during playbacks and plasma corticosterone levels (cort) once during late incubation and once immediately after playbacks. Females in both populations increased feeding rates temporarily during the first 2 h of playback but the increase was not sustained for the entire duration of playback (6 h). Cort levels from samples at the end of the playback did not differ between control females and females that received playbacks. However, females that had higher increases in cort between the incubation and nestling period had greater fledging success. These results suggest that females are able to strategically respond to offspring need, although the role of glucocorticoids in this strategic adjustment remains unclear.

2016 ◽  
Author(s):  
Çağlar Akçay ◽  
Ádám Z. Lendvai ◽  
Mark Stanback ◽  
Mark Hausmann ◽  
Ignacio T. Moore ◽  
...  

AbstractLife history theory predicts that optimal strategies of parental investment will depend on ecological and social factors such as current brood value and offspring need. Parental care strategies are also likely to be mediated in part by the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid hormones. Here we present an experiment in tree swallows (Tachycineta bicolor), a biparental songbird with wide geographic distribution, asking whether parental care is strategically adjusted in response to signals of offspring need and brood value and whether glucocorticoids are involved in these adjustments. Using an automated playback system, we carried out playbacks of nestling begging calls specifically to females in two populations differing in their brood value: a northern population in Ontario, Canada (relatively high brood value) and a southern population in North Carolina, USA (lower brood value). We quantified female offspring provisioning rates before and during playbacks and plasma corticosterone levels (cort) once during late incubation and once immediately after playbacks. Females in both populations increased feeding rates temporarily during the first two hours of playback but the increase was not sustained for the entire duration of playback (six hours). Cort levels from samples at the end of the playback did not differ between control females and females that received playbacks. However, females that had higher increases in cort between the incubation and nestling period had greater fledging success. These results suggest that females are able to strategically respond to offspring need, although the role of glucocorticoids in this strategic adjustment remains unclear.


1991 ◽  
Vol 69 (10) ◽  
pp. 2540-2547 ◽  
Author(s):  
Nathaniel T. Wheelwright ◽  
Joanna Leary ◽  
Caragh Fitzgerald

We investigated the effect of brood size on nestling growth and survival, parental survival, and future fecundity in tree swallows (Tachycineta bicolor) over a 4-year period (1987–1990) in an effort to understand whether reproductive trade-offs limit clutch size in birds. In addition to examining naturally varying brood sizes in a population on Kent Island, New Brunswick, Canada, we experimentally modified brood sizes, increasing or decreasing the reproductive burdens of females by two offspring. Unlike previous studies, broods of the same females were enlarged or reduced in up to 3 successive years in a search for evidence of cumulative costs of reproduction that might go undetected by a single brood manipulation. Neither observation nor experiment supported the existence of a trade-off between offspring quality and quantity, in contrast with the predictions of life-history theory. Nestling wing length, mass, and tarsus length were unrelated to brood size. Although differences between means were in the direction predicted, few differences were statistically significant, despite large sample sizes. Nestlings from small broods were no more likely to return as breeding adults than nestlings from large broods, but return rates of both groups were very low. Parental return rates were also independent of brood size, and there was no evidence of a negative effect of brood size on future fecundity (laying date, clutch size). Reproductive success, nestling size, and survival did not differ between treatments for females whose broods were manipulated in successive years. Within the range of brood sizes observed in this study, the life-history costs of feeding one or two additional nestlings in tree swallows appear to be slight and cannot explain observed clutch sizes. Costs not measured in this study, such as the production of eggs or postfledging parental care, may be more important in limiting clutch size in birds.


2013 ◽  
Vol 26 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Bruce J. Ellis ◽  
Marco Del Giudice

AbstractHow do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary–developmental theory of stress–health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.


2019 ◽  
Author(s):  
Gretchen F. Wagner ◽  
Emeline Mourocq ◽  
Michael Griesser

Biparental care systems are a valuable model to examine conflict, cooperation, and coordination between unrelated individuals, as the product of the interactions between the parents influences the fitness of both individuals. A common experimental technique for testing coordinated responses to changes in the costs of parental care is to temporarily handicap one parent, inducing a higher cost of providing care. However, dissimilarity in experimental designs of these studies has hindered interspecific comparisons of the patterns of cost distribution between parents and offspring. Here we apply a comparative experimental approach by handicapping a parent at nests of five bird species using the same experimental treatment. In some species, a decrease in care by a handicapped parent was compensated by its partner, while in others the increased costs of care were shunted to the offspring. Parental responses to an increased cost of care primarily depended on the total duration of care that offspring require. However, life history pace (i.e., adult survival and fecundity) did not influence parental decisions when faced with a higher cost of caring. Our study highlights that a greater attention to intergenerational trade-offs is warranted, particularly in species with a large burden of parental care. Moreover, we demonstrate that parental care decisions may be weighed more against physiological workload constraints than against future prospects of reproduction, supporting evidence that avian species may devote comparable amounts of energy into survival, regardless of life history strategy.


2017 ◽  
Vol 49 (6) ◽  
pp. 783 ◽  
Author(s):  
Yan WANG ◽  
Zhenchao LIN ◽  
Bowen HOU ◽  
Shijin SUN

Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


2020 ◽  
Vol 37 (8-9) ◽  
pp. 2438-2458
Author(s):  
Ohad Szepsenwol

Recent extensions to life history theory posit that exposure to environmental unpredictability during childhood should forecast negative parental behaviors in adulthood. In the current research, this logic was extended to co-parental behaviors, which refer to how parents coordinate, share responsibility, and support each other’s parental efforts. The effects of early-life unpredictability on individual and dyadic co-parental functioning were examined in a sample of 109 families (two parents and their firstborn child) who were followed longitudinally from before the child’s birth until the age of two. Greater early-life unpredictability (family changes, residential changes, and parents’ occupational changes by age 8) experienced by mothers, but not fathers, predicted more negative co-parental behaviors in triadic observations 6 months post birth, and lower couple-reported co-parenting quality assessed 3, 9, 18, and 24 months post birth. These effects were not explained by parents’ childhood socioeconomic status or current relationship quality. These findings highlight the role of mothers in shaping co-parenting relationships and how these relationships might be influenced by mothers’ early-life experiences.


2019 ◽  
Vol 374 (1768) ◽  
pp. 20180428 ◽  
Author(s):  
Michael D. Jarrold ◽  
Leela J. Chakravarti ◽  
Emma M. Gibbin ◽  
Felix Christen ◽  
Gloria Massamba-N'Siala ◽  
...  

Little is known about the life-history trade-offs and limitations, and the physiological mechanisms that are associated with phenotypic adaptation to future ocean conditions. To address this knowledge gap, we investigated the within- and trans-generation life-history responses and aerobic capacity of a marine polychaete, Ophryotrocha labronica, to elevated temperature and elevated temperature combined with elevated salinity for its entire lifespan. In addition, transplants between treatments were carried out at both the egg mass and juvenile stage to identify the potential influence of developmental effects. Within-generation, life-history trade-offs caused by the timing of transplant were only detected under elevated temperature combined with elevated salinity conditions. Polychaetes transplanted at the egg mass stage grew slower and had lower activities of energy metabolism enzymes but reached a larger maximum body size and lived longer when compared with those transplanted as juveniles. Trans-generation exposure to both elevated temperature and elevated temperature and salinity conditions restored 20 and 21% of lifespan fecundity, respectively. Trans-generation exposure to elevated temperature conditions also resulted in a trade-off between juvenile growth rates and lifespan fecundity, with slower growers showing greater fecundity. Overall, our results suggest that future ocean conditions may select for slower growers. Furthermore, our results indicate that life-history trade-offs and limitations will be more prevalent with the shift of multiple global change drivers, and thus there will be greater constraints on adaptive potential. This article is part of the theme issue ‘The role of plasticity in phenotypic adaptation to rapid environmental change’.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Natalia Fraija-Fernández ◽  
Mercedes Fernández ◽  
Juan A. Raga ◽  
Francisco J. Aznar

Sign in / Sign up

Export Citation Format

Share Document