scholarly journals Signature of a possible $$\alpha $$-cluster state in $$N=Z$$ doubly-magic $$^{56}$$Ni

2020 ◽  
Vol 56 (11) ◽  
Author(s):  
S. Bagchi ◽  
H. Akimune ◽  
J. Gibelin ◽  
M. N. Harakeh ◽  
N. Kalantar-Nayestanaki ◽  
...  
Keyword(s):  
Author(s):  
Akihiro Tohsaki ◽  
Naoyuki Itagaki

Abstract We focus on the raison d’être of the $\alpha$-chain states on the basis of the fully microscopic framework, where the Pauli principle among all the nucleons is fully taken into account. Our purpose is to find the limiting number of $\alpha$ clusters on which the linear $\alpha$-cluster state can stably exist. How many $\alpha$ clusters can stably make an $\alpha$-chain state? We examine the properties of equally separated $\alpha$ clusters on a straight line and compare its stability with that on a circle. We also confirm its stability in terms of binary and ternary disintegrations including $\alpha$-decay and fission modes. For the effective nucleon–nucleon interaction we employ the F1 force, which has finite-range three-body terms and guarantees overall saturation properties of nuclei. This interaction also gives a reasonable binding energy and size of the $\alpha$ particle, and the $\alpha$–$\alpha$ scattering phase shift. The result astonishes us because we can point out the possible existence of $\alpha$-chain states with vast numbers of $\alpha$ clusters.


2014 ◽  
Author(s):  
Paul Alsing ◽  
Michael Fanto ◽  
Gordon Lott

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Shuhong Hao ◽  
Meihong Wang ◽  
Dong Wang ◽  
Xiaolong Su

2013 ◽  
Vol 52 (8) ◽  
pp. 2705-2713 ◽  
Author(s):  
Hua-Gui Zhu ◽  
Guo-qiang Huang ◽  
Cui-Lan Luo

2009 ◽  
Vol 07 (06) ◽  
pp. 1053-1203 ◽  
Author(s):  
ROBERT RAUßENDORF

In this thesis, we describe the one-way quantum computer [Formula: see text], a scheme of universal quantum computation that consists entirely of one-qubit measurements on a highly entangled multiparticle state, i.e. the cluster state. We prove the universality of the [Formula: see text], describe the underlying computational model and demonstrate that the [Formula: see text] can be operated fault-tolerantly. In Sec. 2, we show that the [Formula: see text] can be regarded as a simulator of quantum logic networks. In this way, we prove the universality and establish the link to the network model — the common model of quantum computation. We also indicate that the description of the [Formula: see text] as a network simulator is not adequate in every respect. In Sec. 3, we derive the computational model underlying the [Formula: see text], which is very different from the quantum logic network model. The [Formula: see text] has no quantum input, no quantum output and no quantum register, and the unitary gates from some universal set are not the elementary building blocks of [Formula: see text] quantum algorithms. Further, all information that is processed with the [Formula: see text] is the outcomes of one-qubit measurements and thus processing of information exists only at the classical level. The [Formula: see text] is nevertheless quantum-mechanical, as it uses a highly entangled cluster state as the central physical resource. In Sec. 4, we show that there exist nonzero error thresholds for fault-tolerant quantum computation with the [Formula: see text]. Further, we outline the concept of checksums in the context of the [Formula: see text], which may become an element in future practical and adequate methods for fault-tolerant [Formula: see text] computation.


Sign in / Sign up

Export Citation Format

Share Document