scholarly journals Azimuthal anisotropy of electrons from heavy flavor decays in $\sqrt{s_{NN}}$  =200 GeV Au-Au collisions at PHENIX

2006 ◽  
Vol 49 (1) ◽  
pp. 383-387
Author(s):  
S. Sakai
2006 ◽  
Vol 97 (25) ◽  
Author(s):  
A. Adare ◽  
S. Afanasiev ◽  
C. Aidala ◽  
N. N. Ajitanand ◽  
Y. Akiba ◽  
...  

2006 ◽  
Vol 96 (3) ◽  
Author(s):  
S. S. Adler ◽  
S. Afanasiev ◽  
C. Aidala ◽  
N. N. Ajitanand ◽  
Y. Akiba ◽  
...  

2013 ◽  
Vol 87 (1) ◽  
Author(s):  
A. Adare ◽  
S. Afanasiev ◽  
C. Aidala ◽  
N. N. Ajitanand ◽  
Y. Akiba ◽  
...  

Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Alexander Jentsch

Heavy flavor (HF) quarks (charm, bottom) are important probes of the medium produced in relativistic heavy-ion collisions because they are formed in the early stage and propagate throughout the lifetime of the system. HF-meson spectra and azimuthal anisotropy ( v 2 ) measurements have been reported by experiments at RHIC and the LHC, and they suggest strong interactions of HF quarks with the medium. D 0 -hadron correlations on relative pseudorapidity and azimuth ( Δ η , Δ ϕ ) provide a method for disentangling correlation structures on ( Δ η , Δ ϕ )—allowing for separation of structures related to jets and bulk phenomena directly, with the D 0 serving as a proxy for a charm jet. In these proceedings, we present 2D D 0 -hadron angular correlations as a function of centrality in Au + Au collisions at s N N = 200 GeV. These data reveal a jet-like, peaked structure at ( Δ η , Δ ϕ ) = (0, 0) (near-side), and a Δ η -independent azimuthal harmonic modulation. Here, we focus on the evolution of the near-side peak’s yield and widths on ( Δ η , Δ ϕ ) as a function of centrality and compare them to results from light flavor correlations.


Sign in / Sign up

Export Citation Format

Share Document