scholarly journals Confirming $$U(1)_{L_\mu -L_{\tau }}$$ as a solution for $$(g-2)_\mu $$ with neutrinos

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
D. W. P. Amaral ◽  
D. G. Cerdeño ◽  
A. Cheek ◽  
P. Foldenauer

AbstractThe recent measurement of the muon anomalous magnetic moment by the Fermilab E989 experiment, when combined with the previous result at BNL, has confirmed the tension with the SM prediction at $$4.2\,\sigma $$ 4.2 σ  CL, strengthening the motivation for new physics in the leptonic sector. Among the different particle physics models that could account for such an excess, a gauged $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ stands out for its simplicity. In this article, we explore how the combination of data from different future probes can help identify the nature of the new physics behind the muon anomalous magnetic moment. In particular, we contrast $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ with an effective $$U(1)_{L_\mu }$$ U ( 1 ) L μ -type model. We first show that muon fixed target experiments (such as NA64$$\mu $$ μ ) will be able to measure the coupling of the hidden photon to the muon sector in the region compatible with $$(g-2)_\mu $$ ( g - 2 ) μ , and will have some sensitivity to the hidden photon’s mass. We then study how experiments looking for coherent elastic neutrino-nucleus scattering (CE$$\nu $$ ν NS) at spallation sources will provide crucial additional information on the kinetic mixing of the hidden photon. When combined with NA64$$\mu $$ μ results, the exclusion limits (or reconstructed regions) of future CE$$\nu $$ ν NS detectors will also allow for a better measurement of the mediator mass. Finally, the observation of nuclear recoils from solar neutrinos in dark matter direct detection experiments will provide unique information about the coupling of the hidden photon to the tau sector. The signal expected for $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ is larger than for $$U(1)_{L_\mu }$$ U ( 1 ) L μ with the same kinetic mixing, and future multi-ton liquid xenon proposals (such as DARWIN) have the potential to confirm the former over the latter. We determine the necessary exposure and energy threshold for a potential $$5\,\sigma $$ 5 σ discovery of a $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ boson, and we conclude that the future DARWIN observatory will be able to carry out this measurement if the experimental threshold is lowered to $$1\,{\mathrm {keV}}_{\mathrm {nr}} $$ 1 keV nr .

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
D. W. P. Amaral ◽  
D. G. Cerdeño ◽  
P. Foldenauer ◽  
E. Reid

Abstract Models of gauged $$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$ U 1 L μ − L τ can provide a solution to the long-standing discrepancy between the theoretical prediction for the muon anomalous magnetic moment and its measured value. The extra contribution is due to a new light vector mediator, which also helps to alleviate an existing tension in the determination of the Hubble parameter. In this article, we explore ways to probe this solution via the scattering of solar neutrinos with electrons and nuclei in a range of experiments and considering high and low solar metallicity scenarios. In particular, we reevaluate Borexino constraints on neutrino-electron scattering, finding them to be more stringent than previously reported, and already excluding a part of the (g − 2)μ explanation with mediator masses smaller than 2 × 10−2 GeV. We then show that future direct dark matter detectors will be able to probe most of the remaining solution. Due to its large exposure, LUX-ZEPLIN will explore regions with mediator masses up to 5 × 10−2 GeV and DARWIN will be able to extend the search beyond 10−1 GeV, thereby covering most of the area compatible with (g − 2)μ. For completeness, we have also computed the constraints derived from the recent XENON1T electron recoil search and from the CENNS-10 LAr detector, showing that none of them excludes new areas of the parameter space. Should the excess in the muon anomalous magnetic moment be confirmed, our work suggests that direct detection experiments could provide crucial information with which to test the $$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$ U 1 L μ − L τ solution, complementary to efforts in neutrino experiments and accelerators.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Gorazd Cvetič ◽  
C. S. Kim ◽  
Donghun Lee ◽  
Dibyakrupa Sahoo

Abstract The disagreement between the standard model prediction and the experimental measurement of muon anomalous magnetic moment can be alleviated by invoking an additional particle which is either a vector boson (X1) or a scalar (X0). This new particle, with the mass mX ≲ 2mμ, can be searched for in the decay J/ψ → μ−μ+X, where X is missing. Our numerical study shows that the search is quite feasible at the BESIII experiment in the parameter space allowed by muon g − 2 measurements.


2018 ◽  
Vol 33 (04) ◽  
pp. 1850032 ◽  
Author(s):  
M. Adeel Ajaib

We explore the sparticle spectroscopy of the supersymmetric SU(5) model with nonuniversal gaugino masses in light of latest experimental searches. We assume that the gaugino mass parameters are independent at the GUT scale. We find that the observed deviation in the anomalous magnetic moment of the muon can be explained in this model. The parameter space that explains this deviation predicts a heavy colored sparticle spectrum whereas the sleptons can be light. We also find a notable region of the parameter space that yields the desired relic abundance for dark matter. In addition, we analyze the model in light of latest limits from direct detection experiments and find that the parameter space corresponding to the observed deviation in the muon anomalous magnetic moment can be probed at some of the future direct detection experiments.


Sign in / Sign up

Export Citation Format

Share Document