magnetic vector
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 43)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Neeranut Ratchatanantakit ◽  
Nonnarit O-Larnnithipong ◽  
Pontakorn Sonchan ◽  
Malek Adjouadi ◽  
Armando Barreto

2021 ◽  
Vol 77 (6) ◽  
pp. 509-518
Author(s):  
Keenan Lyon ◽  
Jan Rusz

The multislice method, which simulates the propagation of the incident electron wavefunction through a crystal, is a well established method for analysing the multiple scattering effects that an electron beam may undergo. The inclusion of magnetic effects into this method proves crucial towards simulating enhanced magnetic interaction of vortex beams with magnetic materials, calculating magnetic Bragg spots or searching for magnon signatures, to name a few examples. Inclusion of magnetism poses novel challenges to the efficiency of the multislice method for larger systems, especially regarding the consistent computation of magnetic vector potentials A and magnetic fields B over large supercells. This work presents a tabulation of parameterized magnetic (PM) values for the first three rows of transition metal elements computed from atomic density functional theory (DFT) calculations, allowing for the efficient computation of approximate A and B across large crystals using only structural and magnetic moment size and direction information. Ferromagnetic b.c.c. (body-centred cubic) Fe and tetragonal FePt are chosen to showcase the performance of PM values versus directly obtaining A and B from the unit-cell spin density by DFT. The magnetic fields of b.c.c. Fe are well described by the PM approach while for FePt the PM approach is less accurate due to deformations in the spin density. Calculations of the magnetic signal, namely the change due to A and B of the intensity of diffraction patterns, show that the PM approach for both b.c.c. Fe and FePt is able to describe the effects of magnetism in these systems to a good degree of accuracy.


2021 ◽  
Author(s):  
Yifan Sun ◽  
Feng Li ◽  
Yanghao Chen ◽  
Xiang Xu

Author(s):  
Slobodan Babic

In this paper we give the improved and new analytical and semi-analytical expression for calcu-lating the magnetic vector potential, magnetic field, magnetic force, mutual inductance, torque, and stiffness between two inclined current-carrying arc segments in air. The expressions are ob-tained either in the analytical form over the incomplete elliptic integrals of the first and the sec-ond time or by the single numerical integration of some elliptical integrals of the first and the second kind. The validity of the presented formulas is proved from the special cases when the inclined circular loops are treated. We mention that all formulas are obtain by the integral ap-proach except the stiffness which is found by the derivative of the magnetic force.


Author(s):  
R. J. Campbell ◽  
S. Shelyag ◽  
C. Quintero Noda ◽  
M. Mathioudakis ◽  
P. H. Keys ◽  
...  

2021 ◽  
Vol 32 (4) ◽  
Author(s):  
Luigi D’Alfonso ◽  
Emanuele Garone ◽  
Pietro Muraca ◽  
Paolo Pugliese

AbstractIn this work, we face the problem of estimating the relative position and orientation of a camera and an object, when they are both equipped with inertial measurement units (IMUs), and the object exhibits a set of n landmark points with known coordinates (the so-called Pose estimation or PnP Problem). We present two algorithms that, fusing the information provided by the camera and the IMUs, solve the PnP problem with good accuracy. These algorithms only use the measurements given by IMUs’ inclinometers, as the magnetometers usually give inaccurate estimates of the Earth magnetic vector. The effectiveness of the proposed methods is assessed by numerical simulations and experimental tests. The results of the tests are compared with the most recent methods proposed in the literature.


2021 ◽  
Vol 23 (1) ◽  
pp. 195-211
Author(s):  
I.M. Okiyi ◽  
S.I. Ibeneme ◽  
E.Y. Obiora ◽  
S.O. Onyekuru ◽  
A.I. Selemo ◽  
...  

Residual aeromagnetic data of parts of Southeastern Nigerian sedimentary basin were reduced to the equator and subjected to magnetic vector inversion and spectral analysis. Average depths of source ensembles from spectral analysis were used to compute depth to magnetic tops (Z), base of the magnetic layer (Curie Point t Depth (CPD)), and estimate geothermal gradient and heat flow required for the evaluation of the geothermal resources of the study area. Results from spectral analysis showed depths to the top of the magnetic source ranging between 0.45 km and 1.90 km; centroid depths of 4 km - 7.87 km and CPD of between 6.15 km and 14.19 km. The CPD were used to estimate geothermal gradients which ranged from 20.3°C/km to 50.0°C/km 2 2 and corresponding heat flow values of 34.9 mW/m to 105 mW/m , utilizing an average thermal conductivity -1 -1 of 2.15 Wm k . Ezzagu (Ogboji), Amanator-Isu, Azuinyaba, Nkalagu, Amagunze, Nta-Nselle, Nnam, Akorfornor environs are situated within regions of high geothermal gradients (>38°C/Km) with models delineated beneath these regions using 3D Magnetic Vector Inversion, having dominant NW-SE and NE-SW trends at shallow and greater depths of <1km to >7 km bsl. Based on VES and 2D imaging models the geothermal system in Alok can be classified as Hot Dry Rock (HDR) type, which may likely have emanated from fracture systems. There is prospect for the development of geothermal energy in the study area. Keywords: Airborne Magnetics, Magnetic Vector Inversion, Geothermal Gradient, Heat Flow, Curie Point Depth, Geothermal Energy.


Sign in / Sign up

Export Citation Format

Share Document