scholarly journals Temperature Dependence of the Dielectric Constant Calculated Using a Mean Field Model Close to the Smectic A - Isotropic Liquid Transition

Author(s):  
H. Yurtseven ◽  
E. Kilit
2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
H. Yurtseven ◽  
E. Kilit

The temperature dependence of the dielectric constant is studied under some fixed electric fields for the smectic G- (tilted-) smectic A (orthogonal) transition of the ferroelectric liquid crystal of compound A6. For this study, a mean field model with the quadrupole-quadrupole interactions is introduced. By fitting the inverse dielectric susceptibility from the mean field model to the experimental data from the literature, the observed behaviour of the dielectric constant is described satisfactorily for the smectic AG transition in A6. The transition temperature induced by an external electric field is also discussed for this ferroelectric compound.


2017 ◽  
Vol 36 (9) ◽  
pp. 863-869
Author(s):  
H. Yurtseven ◽  
M. Celik ◽  
H. Karacali

AbstractThe temperature dependences of the spontaneous polarization and the dielectric constant (susceptibility) are calculated using the mean field model for the ferroelectric N(CH3)4HSO4. Expressions derived from the mean field model for the spontaneous polarization and the inverse susceptibility are fitted to the experimental data from the literature. The fitting parameters in the expansion of the free energy in terms of the spontaneous polarization are determined within the temperature intervals in the ferroelectric and paraelectric phases of N(CH3)4HSO4. Our results show that the temperature dependences of the spontaneous polarization and the dielectric constant as predicted from our mean field model, describe adequately the observed behavior of N(CH3)4HSO4 in the ferroelectric and paraelectric phases.


2017 ◽  
Vol 31 (09) ◽  
pp. 1750092 ◽  
Author(s):  
H. Yurtseven ◽  
U. Ipekoğlu ◽  
S. Ateş

Tilt angle (order parameter) and the susceptibility are calculated as a function of temperature for the [Formula: see text]–[Formula: see text] transition in quartz using a Landau phenomenological model. The tilt angle as obtained from the model is fitted to the experimental data from the literature and the temperature dependence of the tilt angle susceptibility is predicted close to the [Formula: see text]–[Formula: see text] transition in quartz. Our results show that the mean field model explains the observed behavior of the [Formula: see text]–[Formula: see text] phase transition in quartz adequately and it can be applied to some related materials.


1998 ◽  
Vol 66 (1-4) ◽  
pp. 259-270 ◽  
Author(s):  
S. SalihoĞLu ◽  
H. Yurtseven ◽  
A. Giz ◽  
D. Kayişoğlu ◽  
A. Konu

Sign in / Sign up

Export Citation Format

Share Document