type crystal
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 41)

H-INDEX

32
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Xiu-Ni Hua ◽  
Wan-Ying Zhang ◽  
Ping-Ping Shi

Switchable nonlinear optical (NLO) materials have aroused broad interest on account of their captivating optical and electronic properties. We demonstrate a novel perovskite-type crystal with exceptional hydrogen bond interactions that...


2022 ◽  
Vol 64 (1) ◽  
pp. 33
Author(s):  
А.А. Валеева ◽  
А.И. Гусев

Possible models of the arrangement of hydrogen atoms at the sites of the cubic lattice of titanium oxyhydride TiOyHp with vacancies in the metallic and nonmetallic sublattices are considered. It was found that titanium oxyhydride retains the B1 type crystal lattice of the initial cubic titanium monoxide TiOy and contains structural vacancies in the metal and oxygen sublattices. Comparison of the found analytical expressions for the intensity of diffraction reflections with experimental X-ray and neutron diffraction data showed that interstitial H atoms in oxyhydrides occupy vacant octahedral positions 4(b) of the oxygen sublattice. No displacement of H atoms in tetrahedral positions 8(c) is observed. A disorder-order phase transition channel associated with the formation of an ordered monoclinic titanium oxyhydride of the Ti5O5 type was found. The distribution functions of Ti, O, and H atoms in the partially ordered monoclinic oxyhydride Ti5.33O5.12H0.74 (Ti0.89O0.85H0.12) with a Ti5O5-type structure are calculated for the first time, and the concentrations of these atoms at the positions of its lattice were found.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8163
Author(s):  
Toyoto Sato ◽  
Shin-ichi Orimo

REMgNi4-based alloys, RE(2−x)MgxNi4 (RE: rare-earth metals; 0 < x < 2), with a AuBe5-type crystal structure, exhibit reversible hydrogen absorption and desorption reactions, which are known as hydrogen storage properties. These reactions involve formation of three hydride phases. The hydride formation pressures and hydrogen storage capacities are related to the radii of the RE(2−x)MgxNi4, which in turn are dependent on the radii and compositional ratios of the RE and Mg atoms. The crystal structures formed during hydrogen absorption reactions are the key to understanding the hydrogen storage properties of RE(2−x)MgxNi4. Therefore, in this review, we provide an overview of the crystal structures in the hydrogen absorption reactions focusing on RE(2−x)MgxNi4.


2021 ◽  
Author(s):  
Wei-Tse Hsu ◽  
Dominique Ramirez ◽  
Tarek Sammakia ◽  
Zhongping Tan ◽  
Michael Shirts

Insulin has been commonly adopted as a peptide drug to treat diabetes given its ability to facilitate the uptake of glucose from the blood. The development of oral insulin remains elusive over decades owing to its susceptibility to the enzymes in the gastrointestinal tract and poor permeability through the intestinal epithelium upon dimerization. Recent experimental studies have revealed that certain O-linked glycosylation patterns could enhance insulin’s proteolytic stability and reduce its dimerization propensity, but the understanding of such phenomena at the molecular level is still evasive. To address this challenge, we propose and test several structural determinants that could potentially in uence insulin’s proteolytic stability and dimerization propensity. We used these as the metrics to assess the properties of interest from 10  s aggregate molecular dynamics of each of 12 targeted insulin glyco-variants from multiple wild-type crystal structures. We found that glycan-involved hydrogen bonds and glycan-dimer occlusion were useful metrics predicting the proteolytic stability and dimerization propensity of insulin, as was in part the solvent accessible surface area of proteolytic sites, while other plausible metrics were not generally predictive. This work helps better explain how O-linked glycosylation in uences the proteolytic stability and monomeric propensity of insulin, illuminating a path towards rational molecular design of insulin glycoforms.


2021 ◽  
Author(s):  
Wei-Tse Hsu ◽  
Dominique Ramirez ◽  
Tarek Sammakia ◽  
Zhongping Tan ◽  
Michael Shirts

Insulin has been commonly adopted as a peptide drug to treat diabetes given its ability to facilitate the uptake of glucose from the blood. The development of oral insulin remains elusive over decades owing to its susceptibility to the enzymes in the gastrointestinal tract and poor permeability through the intestinal epithelium upon dimerization. Recent experimental studies have revealed that certain O-linked glycosylation patterns could enhance insulin’s proteolytic stability and reduce its dimerization propensity, but the understanding of such phenomena at the molecular level is still evasive. To address this challenge, we propose and test several structural determinants that could potentially in uence insulin’s proteolytic stability and dimerization propensity. We used these as the metrics to assess the properties of interest from 10  s aggregate molecular dynamics of each of 12 targeted insulin glyco-variants from multiple wild-type crystal structures. We found that glycan-involved hydrogen bonds and glycan-dimer occlusion were useful metrics predicting the proteolytic stability and dimerization propensity of insulin, as was in part the solvent accessible surface area of proteolytic sites, while other plausible metrics were not generally predictive. This work helps better explain how O-linked glycosylation in uences the proteolytic stability and monomeric propensity of insulin, illuminating a path towards rational molecular design of insulin glycoforms.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5954
Author(s):  
Elena Zvereva ◽  
Tatyana Vasilchikova ◽  
Maria Evstigneeva ◽  
Angelica Tyureva ◽  
Vladimir Nalbandyan ◽  
...  

GdFeTeO6 and GdGaTeO6 have been prepared and their structures refined by the Rietveld method. Both are superstructures of the rosiaite type (space group ). Their thermodynamic properties have been investigated by means of magnetization M and specific heat Cp measurements, evidencing the formation of the long-range antiferromagnetic order at TN = 2.4 K in the former compound and paramagnetic behavior down to 2 K in the latter compound. Large magnetocaloric effect allows considering GdFeTeO6 for the magnetic refrigeration at liquid hydrogen stage. Density functional theory calculations produce estimations of leading Gd–Gd, Gd–Fe and Fe–Fe interactions suggesting unique chiral 120° magnetic structure of Fe3+ (S = 5/2) moments and Gd3+ (J = 7/2) moments rotating in opposite directions (clockwise/anticlockwise) within weakly coupled layers of the rosiaite type crystal structure.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andreas Leineweber ◽  
Marius Holger Wetzel ◽  
Stefan Martin ◽  
Shun-Li Shang ◽  
Zi-Kui Liu

Abstract An unprecedented NiSn2 intermetallic with CoGe2-type crystal structure has been recovered (at ambient conditions) after high-pressure high-temperature treatment of a Ni33Sn67 precursor alloy at 10 GPa and 400 °C. The orthorhombic structure with Aeam space group symmetry is pseudotetragonal. Based on the evaluation of powder X-ray diffraction data, lattice parameters of a = b = 6.2818 Å and c = 11.8960 Å have been determined. Complicated line broadening and results of a further microstructure analysis, however, imply a defective character of the crystal structure. First-principles calculations with different model structures and a comparison with structural trends in the literature suggest that at the high-pressure high-temperature conditions a CuAl2-type crystal structure might be stable, which transforms to the recovered CoGe2-type crystal structure upon cooling or the release of pressure.


2021 ◽  
Vol 323 ◽  
pp. 152-158
Author(s):  
Shou Yuan Xing ◽  
Song Lin ◽  
Zhi Qiang Song ◽  
Zhi Qiang Ou

We reported the structural, magnetic and magenetocaloric properties of Mn1.25Fe0.75P0. 50Si0.50Bx(x = 0.01, 0.02 and 0.04) X-ray diffraction patterns show that all compounds crystallize in the hexagonal Fe2P-type crystal structure. Lattice parameter a increases while c decreases with increasing B contents. The Curie temperature of the compounds have been determined, the values are 219, 268 and 323.2 K for x = 0.01, 0.02, 0.04, respectively. The maximum magnetic entropy changes in a field change of 0~1.5 T are 6.1, 5.3 and 3.5J/kg·K for x = 0.01, 0.02 and 0.04, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karolina Górnicka ◽  
Gabriel Kuderowicz ◽  
Michał J. Winiarski ◽  
Bartłomiej Wiendlocha ◽  
Tomasz Klimczuk

AbstractPolycrystalline LiGa2Ir has been prepared by a solid state reaction method. A Rietveld refinement of powder x-ray diffraction data confirms a previously reported Heusler-type crystal structure (space group Fm-3m, No. 225) with lattice parameter a = 6.0322(1) Å. The normal and superconducting state properties were studied by magnetic susceptibility, heat capacity, and electrical resistivity techniques. A bulk superconductivity with Tc = 2.94 K was confirmed by detailed heat capacity studies. The measurements indicate that LiGa2Ir is a weak-coupling type-II superconductor ($${\uplambda }$$ λ e–p = 0.57, $${\Delta }$$ Δ C/$${\upgamma }$$ γ Tc = 1.4). Electronic structure, lattice dynamics, and the electron–phonon interaction are studied from first principles calculations. Ir and two Ga atoms equally contribute to the Fermi surface with a minor contribution from Li. The phonon spectrum contains separated high frequency Li modes, which are seen clearly as an Einstein-like contribution in the specific heat. The calculated electron–phonon coupling constant $${\uplambda }$$ λ e–p = 0.68 confirms the electron–phonon mechanism for the superconductivity. LiGa2Ir and recently reported isoelectronic LiGa2Rh are the only two known representatives of the Heusler superconductors with the valence electron count VEC = 16.


2021 ◽  
Vol 56 (3) ◽  
pp. 372-383
Author(s):  
Bovi Wira Harsanto ◽  
Yudi Pranoto ◽  
Supriyanto ◽  
Indriana Kartini

This research describes the role of starch nanoparticles in stabilizing the surfactant-free emulsion, namely Pickering emulsion. However, the concentration of starch and NaOH during the preparation of starch nanoparticles as a Pickering emulsifier have not been studied. Thus, this study aimed to obtain the proper concentrations of starch and NaOH when preparing breadfruit-based starch nanoparticles as emulsifiers for a Pickering emulsion. This study varied the concentration of starch (1, 3,or 5 (%(w/v)) and NaOH (0.1875 and 0.375 M) to form a starch dispersion. Starch nanoparticles were acquired through the interactions between the solvent (starch dispersion) and the non-solvent (ethanol) during nanoprecipitation. Then, the starch nanoparticles were evaluated for particle characteristics and emulsifier properties in a Pickering emulsion during two weeks of storage. As a result, the mixture of 5% starch and 0.1875 M NaOH produces breadfruit starch nanoparticles with the smallest size distribution (mean size: 123 nm), amorphous state (V-type crystal pattern), high enthalpy (259.02 J/g), and the best emulsifier properties for a Pickering emulsion, which was stable for two weeks. These results develop knowledge about the potency of breadfruit-based starch nanoparticles using 5% starch with 0.1875 M NaOH in the food emulsion field, particularly to encapsulate bioactive ingredients in a Pickering emulsion.


Sign in / Sign up

Export Citation Format

Share Document