Operational-matrix-based algorithm for differential equations of fractional order with Dirichlet boundary conditions

2019 ◽  
Vol 134 (6) ◽  
Author(s):  
Muhammad Usman ◽  
Muhammad Hamid ◽  
Tamour Zubair ◽  
Rizwan Ul. Haq ◽  
Wei Wang
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


2021 ◽  
Vol 14 (3) ◽  
pp. 706-722
Author(s):  
Francis Ohene Boateng ◽  
Joseph Ackora-Prah ◽  
Benedict Barnes ◽  
John Amoah-Mensah

In this paper, we introduce a Finite Difference Fictitious Domain Wavelet Method (FDFDWM) for solving two dimensional (2D) linear elliptic  partial differential equations (PDEs) with Dirichlet boundary conditions on regular geometric domain. The method reduces the 2D PDE into a 1D system of ordinary differential equations and applies a compactly supported wavelet to approximate the solution. The problem is embedded in a fictitious domain to aid the enforcement of the Dirichlet boundary conditions. We present numerical analysis and show that our method yields better approximation to the solution of the Dirichlet problem than traditional methods like the finite element and finite difference methods.


1993 ◽  
Vol 35 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Patrick J. Browne ◽  
B. D. Sleeman

We are interested in two parameter eigenvalue problems of the formsubject to Dirichlet boundary conditionsThe weight function 5 and the potential q will both be assumed to lie in L2[0,1]. The problem (1.1), (1.2) generates eigencurvesin the sense that for any fixed λ, ν(λ) is the nth eigenvalue ν, (according to oscillation indexing) of (1.1), (1.2). These curves are in fact analytic functions of λ and have been the object of considerable study in recent years. The survey paper [1] provides background in this area and itemises properties of eigencurves.


2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Alessandro Portaluri

AbstractSturm oscillation theorem for second order differential equations was generalized to systems and higher order equations with positive leading coefficient by several authors. What we propose here is a Sturm type oscillation theorem for indefinite systems with Dirichlet boundary conditions of the formwhere p


Sign in / Sign up

Export Citation Format

Share Document