scholarly journals Review and outlook of accelerator-related codes and their interplay with the experiments software

2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Manuela Boscolo ◽  
Helmut Burkhardt ◽  
Gerardo Ganis ◽  
Clément Helsens

AbstractPowerful flexible computer codes are essential for the design and optimisation of accelerator and experiments. We briefly review what already exists and what is needed in terms of accelerator codes. For the FCC-ee, it will be important to include the effects of beamstrahlung and beam–beam interaction as well as machine imperfections and sources of beam-induced backgrounds relevant for the experiments and consider the possibility of beam polarisation. The experiment software Key4hep, which aims to provide a common software stack for future experiments, is described, and the possibility of extending this concept to machine codes is discussed. We analyse how to interface and connect the accelerator and experiment codes in an efficient and flexible way for optimisation of the FCC-ee interaction region design and discuss the possibility of using shared data formats as an interface.

2020 ◽  
Author(s):  
Mathieu Turlure ◽  
Marc Schaming ◽  
Alice Fremand ◽  
Marc Grunberg ◽  
Jean Schmittbuhl

<p><strong>The CDGP Repository for Geothermal Data</strong></p><p>The Data Center for Deep Geothermal Energy (CDGP – Centre de Données de Géothermie Profonde, https://cdgp.u-strasbg.fr) was launched in 2016 by the LabEx G-EAU-THERMIE PROFONDE (http://labex-geothermie.unistra.fr) to preserve, archive and distribute data acquired on geothermal sites in Alsace. Since the beginning of the project, specific procedures are followed to respect international requirements for data management. In particular, FAIR recommendations are used to distribute Findable, Accessible, Interoperable and Reusable data.</p><p>Data currently available on the CDGP mainly consist of seismological and hydraulic data acquired at the Soultz-sous-Forêts geothermal plant pilot project. Data on the website are gathered in episodes. Episodes 1994, 1995, 1996, and 2010 from Soultz-sous-Forêts have been recently added to the episodes already available on the CDGP (1988, 1991, 1993, 2000, 2003, 2004 and 2005). All data are described with metadata and interoperability is promoted with use of open or community-shared data formats: SEED, csv, pdf, etc. Episodes have DOIs.</p><p>To secure Intellectual Property Rights (IPR) set by data providers that partly come from Industry, an Authentication, Authorization and Accounting Infrastructure (AAAI) grants data access depending to distribution rules and user’s affiliation (i.e. academic, industrial, …).</p><p>The CDGP is also a local node for the European Plate Observing System (EPOS) Anthropogenic Hazards platform (https://tcs.ah-epos.eu). The platform provides an environment and facilities (data, services, software) for research onto anthropogenic hazards, especially related to the exploration and exploitation of geo-resources. Some episodes from Soultz-sous-Forêts are already available and the missing-ones will be soon on the platform.</p><p>The next step for the CDGP is first to complete data from Soultz-sous-Forêts. Some data are still missing and must be recovered from the industrial partners. Then, data from the other geothermal sites in Alsace (Rittershoffen, Illkirch, Vendenheim) need to be collected in order to be distributed. Finally, with other French data centers, we are on track to apply the CoreTrustSeal certification (ANR Cedre).</p><p>The preservation of data can be very challenging and time-consuming. We had to deal with obsolete tapes and formats, even incomplete data. Old data are frequently not well documented and the identification of owner is sometimes difficult. However, the hard work to retrieve, collect old geothermal data and make them FAIR is necessary for new analysis and the valorization of these patrimonial data. The re-use of data (e.g. Cauchie et al, 2020) demonstrates the importance of the CDGP.</p>


2016 ◽  
Author(s):  
Samuel H. Friedman ◽  
Alexander R. A. Anderson ◽  
David M. Bortz ◽  
Alexander G. Fletcher ◽  
Hermann B. Frieboes ◽  
...  

AbstractCell biology is increasingly focused on cellular heterogeneity and multicellular systems. To make the fullest use of experimental, clinical, and computational efforts, we need standardized data formats, community-curated “public data libraries”, and tools to combine and analyze shared data. To address these needs, our multidisciplinary community created MultiCellDS (MultiCellular Data Standard): an extensible standard, a library of digital cell lines and tissue snapshots, and support software. With the help of experimentalists, clinicians, modelers, and data and library scientists, we can grow this seed into a community-owned ecosystem of shared data and tools, to the benefit of basic science, engineering, and human health.


Author(s):  
Masanori KAWAI ◽  
Norihito OHUCHI ◽  
Yoshinari KONDO ◽  
Yasuhiro MAKIDA ◽  
Kiyosumi TSUCHIYA ◽  
...  

2006 ◽  
Vol 99 (8) ◽  
pp. 083508 ◽  
Author(s):  
D. R. Luber ◽  
N. M. Haegel

2015 ◽  
Vol 2 (2) ◽  
pp. 22-30
Author(s):  
Lokanadham Naidu Vadlamudi ◽  
◽  
Srinivasulu Asadi ◽  

Sign in / Sign up

Export Citation Format

Share Document