Generalized Solutions of Functional Differential Equations

10.1142/1860 ◽  
1993 ◽  
Author(s):  
Joseph Wiener
2003 ◽  
Vol 10 (3) ◽  
pp. 509-530
Author(s):  
Z. Kamont ◽  
S. Kozieł

Abstract The phase space for nonlinear hyperbolic functional differential equations with unbounded delay is constructed. The set of axioms for generalized solutions of initial problems is presented. A theorem on the existence and continuous dependence upon initial data is given. The Cauchy problem is transformed into a system of integral functional equations. The existence of solutions of this system is proved by the method of successive approximations and by using theorems on integral inequalities. Examples of phase spaces are given.


2007 ◽  
Vol 7 (1) ◽  
pp. 68-82
Author(s):  
K. Kropielnicka

AbstractA general class of implicit difference methods for nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type is constructed. Convergence results are proved by means of consistency and stability arguments. It is assumed that given functions satisfy nonlinear estimates of Perron type with respect to functional variables. Differential equations with deviated variables and differential integral problems can be obtained from a general model by specializing given operators. The results are illustrated by numerical examples.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 451-460 ◽  
Author(s):  
Mohammed Belmekki ◽  
Kheira Mekhalfi

This paper is devoted to study the existence of mild solutions for semilinear functional differential equations with state-dependent delay involving the Riemann-Liouville fractional derivative in a Banach space and resolvent operator. The arguments are based upon M?nch?s fixed point theoremand the technique of measure of noncompactness.


Sign in / Sign up

Export Citation Format

Share Document