The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions

10.1142/2347 ◽  
1994 ◽  
Author(s):  
C Soize
2020 ◽  
Vol 19 (04) ◽  
pp. 2050032
Author(s):  
Chaoqun Xu ◽  
Sanling Yuan

We consider a Richards growth model (modified logistic model) driven by correlated multiplicative and additive colored noises, and investigate the effects of noises on the eventual distribution of population size with the help of steady-state analysis. An approximative Fokker–Planck equation is first derived for the stochastic model. By performing detailed theoretical analysis and numerical simulation for the steady-state solution of the Fokker–Planck equation, i.e., stationary probability distribution (SPD) of the stochastic model, we find that the correlated noises have complex effects on the statistical property of the stochastic model. Specifically, the phenomenological bifurcation may be caused by the noises. The position of extrema of the SPD depends on the model parameter and the characters of noises in different ways.


Author(s):  
Shaurya Kaushal ◽  
Santosh Ansumali ◽  
Bruce Boghosian ◽  
Merek Johnson

Recent work on agent-based models of wealth distribution has yielded nonlinear, non-local Fokker–Planck equations whose steady-state solutions describe empirical wealth distributions with remarkable accuracy using only a few free parameters. Because these equations are often used to solve the ‘inverse problem’ of determining the free parameters given empirical wealth data, there is much impetus to find fast and accurate methods of solving the ‘forward problem’ of finding the steady state corresponding to given parameters. In this work, we derive and calibrate a lattice Boltzmann equation for this purpose. This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems: recent results and new methods’.


Sign in / Sign up

Export Citation Format

Share Document