The lattice Fokker–Planck equation for models of wealth distribution

Author(s):  
Shaurya Kaushal ◽  
Santosh Ansumali ◽  
Bruce Boghosian ◽  
Merek Johnson

Recent work on agent-based models of wealth distribution has yielded nonlinear, non-local Fokker–Planck equations whose steady-state solutions describe empirical wealth distributions with remarkable accuracy using only a few free parameters. Because these equations are often used to solve the ‘inverse problem’ of determining the free parameters given empirical wealth data, there is much impetus to find fast and accurate methods of solving the ‘forward problem’ of finding the steady state corresponding to given parameters. In this work, we derive and calibrate a lattice Boltzmann equation for this purpose. This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems: recent results and new methods’.

2020 ◽  
Vol 30 (04) ◽  
pp. 685-725 ◽  
Author(s):  
Giulia Furioli ◽  
Ada Pulvirenti ◽  
Elide Terraneo ◽  
Giuseppe Toscani

We introduce a class of new one-dimensional linear Fokker–Planck-type equations describing the dynamics of the distribution of wealth in a multi-agent society. The equations are obtained, via a standard limiting procedure, by introducing an economically relevant variant to the kinetic model introduced in 2005 by Cordier, Pareschi and Toscani according to previous studies by Bouchaud and Mézard. The steady state of wealth predicted by these new Fokker–Planck equations remains unchanged with respect to the steady state of the original Fokker–Planck equation. However, unlike the original equation, it is proven by a new logarithmic Sobolev inequality with weight and classical entropy methods that the solution converges exponentially fast to equilibrium.


Author(s):  
R. J. Martin ◽  
R. V. Craster ◽  
M. J. Kearney

We present an analytical technique for solving Fokker–Planck equations that have a steady-state solution by representing the solution as an infinite product rather than, as usual, an infinite sum. This method has many advantages: automatically ensuring positivity of the resulting approximation, and by design exactly matching both the short- and long-term behaviour. The efficacy of the technique is demonstrated via comparisons with computations of typical examples.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 760 ◽  
Author(s):  
Johan Anderson ◽  
Sara Moradi ◽  
Tariq Rafiq

The numerical solutions to a non-linear Fractional Fokker–Planck (FFP) equation are studied estimating the generalized diffusion coefficients. The aim is to model anomalous diffusion using an FFP description with fractional velocity derivatives and Langevin dynamics where Lévy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space. Distribution functions are found using numerical means for varying degrees of fractionality of the stable Lévy distribution as solutions to the FFP equation. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy and modified transport coefficient. The transport coefficient significantly increases with decreasing fractality which is corroborated by analysis of experimental data.


2016 ◽  
Vol 17 (05) ◽  
pp. 1750033 ◽  
Author(s):  
Xu Sun ◽  
Xiaofan Li ◽  
Yayun Zheng

Marcus stochastic differential equations (SDEs) often are appropriate models for stochastic dynamical systems driven by non-Gaussian Lévy processes and have wide applications in engineering and physical sciences. The probability density of the solution to an SDE offers complete statistical information on the underlying stochastic process. Explicit formula for the Fokker–Planck equation, the governing equation for the probability density, is well-known when the SDE is driven by a Brownian motion. In this paper, we address the open question of finding the Fokker–Planck equations for Marcus SDEs in arbitrary dimensions driven by non-Gaussian Lévy processes. The equations are given in a simple form that facilitates theoretical analysis and numerical computation. Several examples are presented to illustrate how the theoretical results can be applied to obtain Fokker–Planck equations for Marcus SDEs driven by Lévy processes.


2021 ◽  
Vol 27 ◽  
pp. 15
Author(s):  
M. Soledad Aronna ◽  
Fredi Tröltzsch

In this article we study an optimal control problem subject to the Fokker-Planck equation ∂tρ − ν∆ρ − div(ρB[u]) = 0 The control variable u is time-dependent and possibly multidimensional, and the function B depends on the space variable and the control. The cost functional is of tracking type and includes a quadratic regularization term on the control. For this problem, we prove existence of optimal controls and first order necessary conditions. Main emphasis is placed on second order necessary and sufficient conditions.


Sign in / Sign up

Export Citation Format

Share Document