Vector bundles and principal bundles

2021 ◽  
pp. 233-259
Author(s):  
Nils A. Baas ◽  
Marcel Bökstedt ◽  
Tore August Kro

AbstractFor a 2-category 2C we associate a notion of a principal 2C-bundle. For the 2-category of 2-vector spaces, in the sense of M.M. Kapranov and V.A. Voevodsky, this gives the 2-vector bundles of N.A. Baas, B.I. Dundas and J. Rognes. Our main result says that the geometric nerve of a good 2-category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. Another 2-category of 2-vector spaces has been proposed by J.C. Baez and A.S. Crans. A calculation using our main theorem shows that in this case the theory of principal 2-bundles splits, up to concordance, as two copies of ordinary vector bundle theory. When 2C is a cobordism type 2-category we get a new notion of cobordism-bundles which turns out to be classified by the Madsen–Weiss spaces.


2003 ◽  
Vol 2003 (23) ◽  
pp. 1465-1480
Author(s):  
Efstathios Vassiliou ◽  
Apostolos Nikolopoulos

Given a Lie groupoidΩ, we construct a groupoidJ1Ωequipped with a universal connection from which all the connections ofΩare obtained by certain pullbacks. We show that this general construction leads to universal connections on principal bundles (considered by García (1972)) and universal linear connections on vector bundles (ultimately related with those of Cordero et al. (1989)).


2013 ◽  
Vol 63 (3) ◽  
pp. 1033-1054 ◽  
Author(s):  
Vasile Brînzănescu ◽  
Andrei D. Halanay ◽  
Günther Trautmann

2011 ◽  
Vol 57 (2) ◽  
pp. 409-416
Author(s):  
Mihai Anastasiei

Banach Lie AlgebroidsFirst, we extend the notion of second order differential equations (SODE) on a smooth manifold to anchored Banach vector bundles. Then we define the Banach Lie algebroids as Lie algebroids structures modeled on anchored Banach vector bundles and prove that they form a category.


Author(s):  
Lorenzo De Biase ◽  
Enrico Fatighenti ◽  
Fabio Tanturri

AbstractWe rework the Mori–Mukai classification of Fano 3-folds, by describing each of the 105 families via biregular models as zero loci of general global sections of homogeneous vector bundles over products of Grassmannians.


Author(s):  
Tom Bachmann ◽  
Kirsten Wickelgren

Abstract We equate various Euler classes of algebraic vector bundles, including those of [12] and one suggested by M. J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler class and give formulas for local indices at isolated zeros, both in terms of the six-functors formalism of coherent sheaves and as an explicit recipe in the commutative algebra of Scheja and Storch. As an application, we compute the Euler classes enriched in bilinear forms associated to arithmetic counts of d-planes on complete intersections in $\mathbb P^n$ in terms of topological Euler numbers over $\mathbb {R}$ and $\mathbb {C}$ .


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Soheyla Feyzbakhsh ◽  
Chunyi Li

AbstractLet (X, H) be a polarized K3 surface with $$\mathrm {Pic}(X) = \mathbb {Z}H$$ Pic ( X ) = Z H , and let $$C\in |H|$$ C ∈ | H | be a smooth curve of genus g. We give an upper bound on the dimension of global sections of a semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C with high genus. In particular, when $$g\ge r^2\ge 4$$ g ≥ r 2 ≥ 4 , the rank r Clifford index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X corresponding to line bundles on the curve C. This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also apply the same method to the projective plane and show that the rank r Clifford index of a degree $$d(\ge 5)$$ d ( ≥ 5 ) smooth plane curve is $$d-4$$ d - 4 , which is the same as the Clifford index of the curve.


Sign in / Sign up

Export Citation Format

Share Document