Formal Topology and Univalent Foundations

2021 ◽  
pp. 255-266
Author(s):  
Thierry Coquand ◽  
Ayberk Tosun
1997 ◽  
Vol 62 (3) ◽  
pp. 689-698 ◽  
Author(s):  
Thierry Coquand

A standard result in topological dynamics is the existence of minimal subsystem. It is a direct consequence of Zorn's lemma: given a compact topological space X with a map f: X→X, the set of compact non empty subspaces K of X such that f(K) ⊆ K ordered by inclusion is inductive, and hence has minimal elements. It is natural to ask for a point-free (or formal) formulation of this statement. In a previous work [3], we gave such a formulation for a quite special instance of this statement, which is used in proving a purely combinatorial theorem (van de Waerden's theorem on arithmetical progression).In this paper, we extend our analysis to the case where X is a boolean space, that is compact totally disconnected. In such a case, we give a point-free formulation of the existence of a minimal subspace for any continuous map f: X→X. We show that such minimal subspaces can be described as points of a suitable formal topology, and the “existence” of such points become the problem of the consistency of the theory describing a generic point of this space. We show the consistency of this theory by building effectively and algebraically a topological model. As an application, we get a new, purely algebraic proof, of the minimal property of [3]. We show then in detail how this property can be used to give a proof of (a special case of) van der Waerden's theorem on arithmetical progression, that is “similar in structure” to the topological proof [6, 8], but which uses a simple algebraic remark (Proposition 1) instead of Zorn's lemma. A last section tries to place this work in a wider context, as a reformulation of Hilbert's method of introduction/elimination of ideal elements.


Author(s):  
Lev D. Lamberov ◽  

In recent decades, some epistemological issues have become especially acute in mathematics. These issues are associated with long proofs of various important mathematical results, as well as with a large and constantly increasing number of publications in mathematics. It is assumed that (at least partially) these difficulties can be resolved by referring to computer proofs. However, computer proofs also turn out to be problematic from an epistemological point of view. With regard to both proofs in ordinary (informal) mathematics and computer proofs, the problem of their surveyability appears to be fundamental. Based on the traditional concept of proof, it must be surveyable, otherwise it will not achieve its main goal — the formation of conviction in the correctness of the mathematical result being proved. About 15 years ago, a new approach to the foundations of mathematics began to develop, combining constructivist, structuralist features and a number of advantages of the classical approach to mathematics. This approach is built on the basis of homotopy type theory and is called the univalent foundations of mathematics. Due to itspowerful notion of equality, this approach can significantly reduce the length of formalized proofs, which outlines a way to resolve the epistemological difficulties that have arisen


2013 ◽  
pp. 1-45 ◽  
Author(s):  
Francesco Ciraulo ◽  
Maria Emilia Maietti ◽  
Giovanni Sambin
Keyword(s):  

2006 ◽  
Vol 137 (1-3) ◽  
pp. 413-438 ◽  
Author(s):  
Steven Vickers
Keyword(s):  

1997 ◽  
Vol 62 (4) ◽  
pp. 1315-1332 ◽  
Author(s):  
Sara Negri ◽  
Silvio Valentini

In this paper we give a constructive proof of the pointfree version of Tychonoff's theorem within formal topology, using ideas from Coquand's proof in [7]. To deal with pointfree topology Coquand uses Johnstone's coverages. Because of the representation theorem in [3], from a mathematical viewpoint these structures are equivalent to formal topologies but there is an essential difference also. Namely, formal topologies have been developed within Martin Löf's constructive type theory (cf. [16]), which thus gives a direct way of formalizing them (cf. [4]).The most important aspect of our proof is that it is based on an inductive definition of the topological product of formal topologies. This fact allows us to transform Coquand's proof into a proof by structural induction on the last rule applied in a derivation of a cover. The inductive generation of a cover, together with a modification of the inductive property proposed by Coquand, makes it possible to formulate our proof of Tychonoff s theorem in constructive type theory. There is thus a clear difference to earlier localic proofs of Tychonoff's theorem known in the literature (cf. [9, 10, 12, 14, 27]). Indeed we not only avoid to use the axiom of choice, but reach constructiveness in a very strong sense. Namely, our proof of Tychonoff's theorem supplies an algorithm which, given a cover of the product space, computes a finite subcover, provided that there exists a similar algorithm for each component space.


2015 ◽  
Vol 25 (5) ◽  
pp. 1010-1039 ◽  
Author(s):  
BENEDIKT AHRENS ◽  
KRZYSZTOF KAPULKIN ◽  
MICHAEL SHULMAN

We develop category theory within Univalent Foundations, which is a foundational system for mathematics based on a homotopical interpretation of dependent type theory. In this system, we propose a definition of ‘category’ for which equality and equivalence of categories agree. Such categories satisfy a version of the univalence axiom, saying that the type of isomorphisms between any two objects is equivalent to the identity type between these objects; we call them ‘saturated’ or ‘univalent’ categories. Moreover, we show that any category is weakly equivalent to a univalent one in a universal way. In homotopical and higher-categorical semantics, this construction corresponds to a truncated version of the Rezk completion for Segal spaces, and also to the stack completion of a prestack.


Sign in / Sign up

Export Citation Format

Share Document