BÄCKLUND TRANSFORMATIONS AND RIEMANN-HILBERT PROBLEM FOR N WAVE EQUATIONS WITH ADDITIONAL SYMMETRIES

Author(s):  
T. VALCHEV

Like a number of other nonlinear dispersive wave equations the sine–Gordonequation z , xt = sin z has both multi-soliton solutions and an infinity of conserved densities which are polynomials in z , x , z , xx , etc. We prove that the generalized sine–Gordon equation z , xt = F ( z ) has an infinity of such polynomial conserved densities if, and only if, F ( z ) = A e αz + B e – αz for complex valued A, B and α ≠ 0. If F ( z ) does not take the form A e αz + B e βz there is no p. c. d. of rank greater than two. If α ≠ – β there is only a finite number of p. c. ds. If α = – β then if A and B are non-zero all p. c. ds are of even rank; if either A or B vanishes the p. c. ds are of both even and odd ranks. We exhibit the first eleven p. c. ds in each case when α = – β and the first eight when α ≠ – β . Neither the odd rank p. c. ds in the case α = – β , nor the particular limited set of p. c. ds in the case when α ≠ – β have been reported before. We connect the existence of an infinity of p. c. ds with solutions of the equations through an inverse scattering method, with Bäcklund transformations and, via Noether’s theorem, with infinitesimal Bäcklund transformations. All equations with Bäcklund transformations have an infinity of p. c. ds but not all such p. c. ds can be generated from the Bäcklund transformations. We deduce that multiple sine–Gordon equations like z , xt = sin z + ½ sin ½ z , which have applications in the theory of short optical pulse propagation, do not have an infinity of p. c. ds. For these equations we find essentially three conservation laws: one and only one of these is a p. c. d. and this is of rank two. We conclude that the multiple sine–Gordons will not be soluble by present formulations of the inverse scattering method despite numerical solutions which show soliton like behaviour. Results and conclusions are wholly consistent with the theorem that the generalized sine–Gordon equation has auto-Bäcklund transformations if, and only if Ḟ ( z ) – α 2 F ( z ) = 0.


2017 ◽  
Vol 72 (4) ◽  
pp. 331-337 ◽  
Author(s):  
Zhao-Wen Yan

AbstractThe Heisenberg supermagnet model is an important supersymmetric integrable system in (1+1)-dimensions. We construct two types of the (2+1)-dimensional integrable Heisenberg supermagnet models with the quadratic constraints and investigate the integrability of the systems. In terms of the gage transformation, we derive their gage equivalent counterparts. Furthermore, we also construct new solutions of the supersymmetric integrable systems by means of the Bäcklund transformations.


Author(s):  
Stefan Hollands

AbstractWe introduce a new approach to find the Tomita–Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo–Martin–Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann–Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered.


Sign in / Sign up

Export Citation Format

Share Document