inverse scattering method
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 17)

H-INDEX

35
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2124
Author(s):  
Nikolai Bogoliubov ◽  
Andrei Rybin

In this Communication, we consider a generalised Tavis–Cummings model when the damping process is taken into account. We show that the quantum dynamics governed by a non-Hermitian Hamiltonian is exactly solvable using the Quantum Inverse Scattering Method, and the Algebraic Bethe Ansatz. The leakage of photons is described by a Lindblad-type master equation. The non-Hermitian Hamiltonian is diagonalised by state vectors, which are elementary symmetric functions parametrised by the solutions of the Bethe equations. The time evolution of the photon annihilation operator is defined via a corresponding determinant representation.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012061
Author(s):  
Zh B Umurzakhova ◽  
K R Yesmakhanova ◽  
A A Naizagarayeva ◽  
U Meirambek

Abstract In this paper we research the (1+1)-dimensional system of Schrodinger-Maxwell-Bloch equations (NLS-MBE), which describes the optical pulse propagation in an erbium doped fiber and find PT-symmetric and reverse space-time Schrodinger-Maxwell-Bloch equations, i.e. the kinds of nonlocal Schrodinger-Maxwell-Bloch equations. In particular case, the system of Schrödinger-Maxwell-Bloch equations is integrable by the Inverse Scattering Method as shown in the work of M.A blowitz and Z. Musslimani. Following this method we prove the integrability of the nonlocal system of Schröodinger-Maxwell-Bloch equations by Lax pairs. Also the explicit and different seed solutions are constructed by using Darboux transformation.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Marco Astorino ◽  
Adriano Viganò

AbstractAn analytical solution of four-dimensional General Relativity, representing an array of collinear and accelerating black holes, is constructed with the inverse scattering method. The metric can be completely regularised from any conical singularity, thanks to the presence of an external gravitational field. Therefore the multi-black hole configuration can be maintained at equilibrium without the need of strings or struts. Some notable subcases such as the accelerating distorted Schwarzschild black hole and the distorted double C-metric are explicitly presented. The Smarr law and the thermodynamics of these systems is studied. The Bonnor–Swaminarayan and the Bičák–Hoenselaers–Schmidt particle metrics are recovered, through appropriate limits, from the multi-black holes solutions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mansur I. Ismailov

Abstract A dispersive N-wave interaction problem ( N = 2 ⁢ n {N=2n} ), involving n velocities in two spatial and one temporal dimensions, is introduced. Explicit solutions of the problem are provided by using the inverse scattering method. The model we propose is a generalization of both the N-wave interaction problem and the ( 2 + 1 ) {(2+1)} matrix Davey–Stewartson equation. The latter examines the Benney-type model of interactions between short and long waves. Referring to the two-dimensional Manakov system, an associated Gelfand–Levitan–Marchenko-type, or so-called inversion-like, equation is constructed. It is shown that the presence of the degenerate kernel reads explicit soliton-like solutions of the dispersive N-wave interaction problem. We also present a discussion on the uniqueness of the solution of the Cauchy problem on an arbitrary time interval for small initial data.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Shankar Balasubramanian ◽  
Abu Patoary ◽  
Victor Galitski

Abstract Reflectionless potentials play an important role in constructing exact solutions to classical dynamical systems (such as the Korteweg-de Vries equation), non-perturbative solutions of various large-N field theories (such as the Gross-Neveu model), and closely related solitonic solutions to the Bogoliubov-de Gennes equations in the theory of superconductivity. These solutions rely on the inverse scattering method, which reduces these seemingly unrelated problems to identifying reflectionless potentials of an auxiliary one-dimensional quantum scattering problem. There are several ways of constructing these potentials, one of which is quantum mechanical supersymmetry (SUSY). In this paper, motivated by recent experimental platforms, we generalize this framework to develop a theory of lattice solitons. We first briefly review the classical inverse scattering method in the continuum limit, focusing on the Korteweg-de Vries (KdV) equation and SU(N) Gross-Neveu model in the large N limit. We then generalize this methodology to lattice versions of interacting field theories. Our analysis hinges on the use of trace identities, which are relations connecting the potential of an equation of motion to the scattering data. For a discrete Schrödinger operator, such trace identities had been known as far back as Toda; however, we derive a new set of identities for the discrete Dirac operator. We then use these identities in a lattice Gross-Neveu and chiral Gross-Neveu (Nambu-Jona-Lasinio) model to show that lattice solitons correspond to reflectionless potentials associated with the discrete scattering problem. These models are of significance as they are equivalent to a mean-field theory of a lattice superconductor. To explicitly construct these solitons, we generalize supersymmetric quantum mechanics to tight-binding models. We show that a matrix transformation exists that maps a tight-binding model to an isospectral one which shares the same structure and scattering properties. The corresponding soliton solutions have both modulated hopping and onsite potential, the former of which has no analogue in the continuum limit. We explicitly compute both topological and non-topological soliton solutions as well as bound state spectra in the aforementioned models.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guixian Wang ◽  
Xiu-Bin Wang ◽  
Bo Han ◽  
Qi Xue

Abstract In this paper, the inverse scattering approach is applied to the Kundu-Eckhaus equation with two cases of zero boundary condition (ZBC) and nonzero boundary conditions (NZBCs) at infinity. Firstly, we obtain the exact formulae of soliton solutions of three cases of N simple poles, one higher-order pole and multiple higher-order poles via the associated Riemann-Hilbert problem (RHP). Moreover, given the initial data that allow for the presence of discrete spectrum, the higher-order rogue waves of the equation are presented. For the case of NZBCs, we can construct the infinite order rogue waves through developing a suitable RHP. Finally, by choosing different parameters, we aim to show some prominent characteristics of this solution and express them graphically in detail. Our results should be helpful to further explore and enrich the related nonlinear wave phenomena.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Changrim Ahn ◽  
Matthias Staudacher

Abstract We refine the notion of eclectic spin chains introduced in [1] by including a maximal number of deformation parameters. These models are integrable, nearest-neighbor n-state spin chains with exceedingly simple non-hermitian Hamiltonians. They turn out to be non-diagonalizable in the multiparticle sector (n > 2), where their “spectrum” consists of an intricate collection of Jordan blocks of arbitrary size and multiplicity. We show how and why the quantum inverse scattering method, sought to be universally applicable to integrable nearest-neighbor spin chains, essentially fails to reproduce the details of this spectrum. We then provide, for n=3, detailed evidence by a variety of analytical and numerical techniques that the spectrum is not “random”, but instead shows surprisingly subtle and regular patterns that moreover exhibit universality for generic deformation parameters. We also introduce a new model, the hypereclectic spin chain, where all parameters are zero except for one. Despite the extreme simplicity of its Hamiltonian, it still seems to reproduce the above “generic” spectra as a subset of an even more intricate overall spectrum. Our models are inspired by parts of the one-loop dilatation operator of a strongly twisted, double-scaled deformation of $$ \mathcal{N} $$ N = 4 Super Yang-Mills Theory.


Author(s):  
G.U. Urazboev ◽  
◽  
A.A. Reyimberganov ◽  
A.K. Babadjanova ◽  
◽  
...  

This paper is concerned with studying the matrix nonlinear Schr¨odinger equation with a self-consistent source. The source consists of the combination of the eigenfunctions of the corresponding spectral problem for the matrix Zakharov-Shabat system which has not spectral singularities. The theorem about the evolution of the scattering data of a non-self-adjoint matrix Zakharov-Shabat system which potential is a solution of the matrix nonlinear Schr¨odinger equation with the self-consistent source is proved. The obtained results allow us to solve the Cauchy problem for the matrix nonlinear Schr¨odinger equation with a self-consistent source in the class of the rapidly decreasing functions via the inverse scattering method. A one-to-one correspondence between the potential of the matrix Zakharov-Shabat system and scattering data provide the uniqueness of the solution of the considering problem. A step-by-step algorithm for finding a solution to the problem under consideration is presented.


Sign in / Sign up

Export Citation Format

Share Document