HIGHER-ORDER SHALLOW WATER EQUATIONS, EXPLICIT SOLUTIONS AND THE CAMASSA-HOLM EQUATION

Author(s):  
D. F. PARKER
2013 ◽  
Vol 141 (10) ◽  
pp. 3435-3449 ◽  
Author(s):  
Jun Jia ◽  
Judith C. Hill ◽  
Katherine J. Evans ◽  
George I. Fann ◽  
Mark A. Taylor

Abstract Although significant gains have been made in achieving high-order spatial accuracy in global climate modeling, less attention has been given to the impact imposed by low-order temporal discretizations. For long-time simulations, the error accumulation can be significant, indicating a need for higher-order temporal accuracy. A spectral deferred correction (SDC) method is demonstrated of even order, with second- to eighth-order accuracy and A-stability for the temporal discretization of the shallow water equations within the spectral-element High-Order Methods Modeling Environment (HOMME). Because this method is stable and of high order, larger time-step sizes can be taken while still yielding accurate long-time simulations. The spectral deferred correction method has been tested on a suite of popular benchmark problems for the shallow water equations, and when compared to the explicit leapfrog, five-stage Runge–Kutta, and fully implicit (FI) second-order backward differentiation formula (BDF2) time-integration methods, it achieves higher accuracy for the same or larger time-step sizes. One of the benchmark problems, the linear advection of a Gaussian bell height anomaly, is extended to run for longer time periods to mimic climate-length simulations, and the leapfrog integration method exhibited visible degradation for climate length simulations whereas the second-order and higher methods did not. When integrated with higher-order SDC methods, a suite of shallow water test problems is able to replicate the test with better accuracy.


Author(s):  
Xiao-Hua Zhu ◽  
Xiao-Hua Zhu ◽  
Ze-Nan Zhu ◽  
Ze-Nan Zhu ◽  
Xinyu Guo ◽  
...  

A coastal acoustic tomography (CAT) experiment for mapping the tidal currents in the Zhitouyang Bay was successfully carried out with seven acoustic stations during July 12 to 13, 2009. The horizontal distributions of tidal current in the tomography domain are calculated by the inverse analysis in which the travel time differences for sound traveling reciprocally are used as data. Spatial mean amplitude ratios M2 : M4 : M6 are 1.00 : 0.15 : 0.11. The shallow-water equations are used to analyze the generation mechanisms of M4 and M6. In the deep area, velocity amplitudes of M4 measured by CAT agree well with those of M4 predicted by the advection terms in the shallow water equations, indicating that M4 in the deep area where water depths are larger than 60 m is predominantly generated by the advection terms. M6 measured by CAT and M6 predicted by the nonlinear quadratic bottom friction terms agree well in the area where water depths are less than 20 m, indicating that friction mechanisms are predominant for generating M6 in the shallow area. Dynamic analysis of the residual currents using the tidally averaged momentum equation shows that spatial mean values of the horizontal pressure gradient due to residual sea level and of the advection of residual currents together contribute about 75% of the spatial mean values of the advection by the tidal currents, indicating that residual currents in this bay are induced mainly by the nonlinear effects of tidal currents.


Sign in / Sign up

Export Citation Format

Share Document