Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería
Latest Publications


TOTAL DOCUMENTS

382
(FIVE YEARS 135)

H-INDEX

7
(FIVE YEARS 2)

Published By "Scipedia, S.L."

1886-158x, 0213-1315

Author(s):  
Ferreira J. ◽  
Steiner M.

Logistic distribution involves many costs for organizations. Therefore, opportunities for optimization in this respect are always welcome. The purpose of this work is to present a methodology to provide a solution to a complexity task of optimization in Multi-objective Optimization for Green Vehicle Routing Problem (MOOGVRP). The methodology, illustrated using a case study (employee transport problem) and instances from the literature, was divided into three stages: Stage 1, “data treatment”, where the asymmetry of the routes to be formed and other particular features were addressed; Stage 2, “metaheuristic approaches” (hybrid or non-hybrid), used comparatively, more specifically: NSGA-II (Non-dominated Sorting Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), which were compared with the new approaches proposed by the authors, CWNSGA-II (Clarke and Wright’s Savings with the Non-dominated Sorting Genetic Algorithm II) and CWTSNSGA-II (Clarke and Wright’s Savings, Tabu Search and Non-dominated Sorting Genetic Algorithm II); and, finally, Stage 3, “analysis of the results”, with a comparison of the algorithms. Using the same parameters as the current solution, an optimization of 5.2% was achieved for Objective Function 1 (OF{\displaystyle _{1}}; minimization of CO{\displaystyle _{2}} emissions) and 11.4% with regard to Objective Function 2 (OF{\displaystyle _{2}}; minimization of the difference in demand), with the proposed CWNSGA-II algorithm showing superiority over the others for the approached problem. Furthermore, a complementary scenario was tested, meeting the constraints required by the company concerning time limitation. For the instances from the literature, the CWNSGA-II and CWTSNSGA-II algorithms achieved superior results.


Author(s):  
L. Stajic ◽  
B. Đorđević ◽  
S. Ilić ◽  
D. Brkić

The paper examines the primary drivers and factors influencing the volatility of natural gas prices in the world from January 2007 to July 2020. In addition to the narrow dependence between crude oil and natural gas prices, the influence of renewable energy production and coal production on the price of natural gas has been studied. For that purpose, the method of multiple linear regression was used. The results show that the volatility of natural gas prices significantly depends on the type of the shock in the natural gas market, and that the total production of energy from renewable sources, production of coal and natural gas and the price of crude oil have a significant impact on the price of gas.


Author(s):  
M. Khanloo ◽  
H. Dashti-Naserabadi ◽  
M. Jamshidi

One of the most common methods of strengthening concrete structures is the use of composite fibers such as FRP. These fibers have found a special place in structural retrofitting methods due to a number of specific ability including lightness and ease of performance. Reinforced concrete structures have long been considered by design engineers for the possibility of retrofitting high strength composite steel structures. In this study, twenty-two steel beam models were modeled by ANSYS software. Variable parameters studied in the modeled steel beams can be referred to the number, orientation and thickness of composite layers.


Author(s):  
Y. Ni ◽  
W. Zhang ◽  
Y. Lv

To investigate the structural dynamic characteristics of a folding wing effectively, a fast structural dynamic modeling approach is proposed. Firstly, the interface compatible relationship of the traditional fixed interface component modal synthesis method is modified, and the internal force of the interface is completely expressed in the structural dynamic equation, so that the influence of the connection stiffness on the wing structure dynamics can be considered. Then, on the basis of the fixed interface component modal synthesis method, the main mode of fixed-loaded interface is introduced to establish the mixed-loaded interface component modal synthesis method, which makes it feasible to accurately reflect the influence of elasticity and inertia of fuselage and outer wing on inner wing. The structural dynamics modeling method based on two different kinds of component modal synthesis method analyzed and deduced in detail. The application of component modal synthesis method in the fast structural dynamics modeling of folding wing is achieved. The whole program is compiled in MATLAB. At the same time, the dynamic characteristics of the folding wing with different folding angles, different connections and different connection positions is investigated. The results of the method proposed in this paper are compared with the results of the repeated finite model established in MSC.NASTRAN to verify the effectiveness from the aspects of natural frequency and vibration mode.


Author(s):  
A. Krstic ◽  
D. Nikolic ◽  
M. Papic

https://www.scipedia.com/public/Krstic_et_al_2021a


Author(s):  
D. Pulgarín ◽  
J. Plaza ◽  
J. Ruge ◽  
J. Rojas

This study proposes a methodology for the calibration of combined sewer overflow (CSO), incorporating the results of the three-dimensional ANSYS CFX model in the SWMM one-dimensional model. The procedure consists of constructing calibration curves in ANSYS CFX that relate the input flow to the CSO with the overflow, to then incorporate them into the SWMM model. The results obtained show that the behavior of the flow over the crest of the overflow weir varies in space and time. Therefore, the flow of entry to the CSO and the flow of excesses maintain a non-linear relationship, contrary to the results obtained in the one-dimensional model. However, the uncertainty associated with the idealization of flow methodologies in one dimension is reduced under the SWMM model with kinematic wave conditions and simulating CSO from curves obtained in ANSYS CFX. The result obtained facilitates the calibration of combined sewer networks for permanent or non-permanent flow conditions, by means of the construction of curves in a three-dimensional model, especially when the information collected in situ is limited.


Author(s):  
B. Souza ◽  
D. Fernades ◽  
C. Anflor ◽  
M. Morais

In order to reduce the discretization error, in this paper, Richardson’s Extrapolation and Convergence Error Estimator were used to investigating the buckling problem convergence. The main objective was to verify the convergence order of the stepped column problem and to define a consistent moment of inertia at the point of variation of the cross-section. The variable of interest was the critical buckling load obtained by the Finite Difference Method. The convergent solution obtained errors less than 10-8, and this work showed that the best solution is not defined by excessive mesh refinement, but by the solution convergence analysis.


Author(s):  
H. Deng ◽  
Q. Shi ◽  
Y. Wang

In the modern industry, in order to reduce the inventory pressure, a variety of parts began to use unified kind spare parts for maintenance. However, highly integrated equipment is more difficult to use traditional RCM models, and researchers begin to steering based on state monitoring methods. Deepen a prediction of equipment failure. This paper mainly discussed the data-driven analysis method based on the Wiener process to predict the fault law of the same type. The joint model innovatively adopts the (s-1, s) policy considering the industrial characteristic and multi-period resupply. In the end, we analyze (s-1, s) policy in joint optimization by comparison to draw the optimal policy combination.


Author(s):  
J. Molina-Villegas ◽  
J. Ortega ◽  
A. Toro

Beams on elastic foundation are basic elements within structural analysis, which are used to model foundation beams, foundation piles, retaining walls, and more complex structures that include some of these elements. For their analysis, the finite element method is usually used [1], which produces an approximate solution of the problem; and the Green's function stiffness method [2], which produces an exact solution. This article presents a methodology 100% based on the use of Green function's (response to a unit point force), to obtain the exact response of beams on elastic foundation. The main advantage of this formulation is its computational low cost compared to the aforementioned alternatives, and even for a large number of problems, it can be expressed only by means of sums and integrals, which can be easily performed numerically. Also, a great variety of Green function's for finite and infinite beams on elastic foundations with different boundary conditions are also presented, as well as some examples with the implementation of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document