Author(s):  
A. F. Beardon

AbstractThe unwinding number of a complex number was introduced to process automatic computations involving complex numbers and multi-valued complex functions, and has been successfully applied to computations involving branches of the Lambert W function. In this partly expository note we discuss the unwinding number from a purely topological perspective, and link it to the classical winding number of a curve in the complex plane. We also use the unwinding number to give a representation of the branches $$W_k$$ W k of the Lambert W function as a line integral.


1993 ◽  
Vol 2 (3) ◽  
pp. 77-106 ◽  
Author(s):  
Harry H. Cheng

The handling of complex numbers in the CHprogramming language will be described in this paper. Complex is a built-in data type in CH. The I/O, arithmetic and relational operations, and built-in mathematical functions are defined for both regular complex numbers and complex metanumbers of ComplexZero, Complexlnf, and ComplexNaN. Due to polymorphism, the syntax of complex arithmetic and relational operations and built-in mathematical functions are the same as those for real numbers. Besides polymorphism, the built-in mathematical functions are implemented with a variable number of arguments that greatly simplify computations of different branches of multiple-valued complex functions. The valid lvalues related to complex numbers are defined. Rationales for the design of complex features in CHare discussed from language design, implementation, and application points of views. Sample CHprograms show that a computer language that does not distinguish the sign of zeros in complex numbers can also handle the branch cuts of multiple-valued complex functions effectively so long as it is appropriately designed and implemented.


2009 ◽  
Vol 17 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Chanapat Pacharapokin ◽  
Hiroshi Yamazaki ◽  
Yasunari Shidama ◽  
Yatsuka Nakamura

Complex Function Differentiability For a complex valued function defined on its domain in complex numbers the differentiability in a single point and on a subset of the domain is presented. The main elements of differential calculus are developed. The algebraic properties of differential complex functions are shown.


Author(s):  
Juan Carlos Ponce Campuzano

RESUMENExisten diversos métodos para visualizar funciones complejas, tales como graficar por separado sus componentes reales e imaginarios, mapear o transformar una región, el método de superficies analíticas y el método de dominio coloreado. Este último es uno de los métodos más recientes y aprovecha ciertas características del color y su procesamiento digital. La idea básica es usar colores, luminosidad y sombras como dimensiones adicionales, y para visualizar números complejos se usa una función real que asocia a cada número complejo un color determinado. El plano complejo puede entonces visualizarse como una paleta de colores construida a partir del esquema HSV (del inglés Hue, Saturation, Value – Matiz, Saturación, Valor). Como resultado, el método de dominio coloreado permite visualizar ceros y polos de funciones, ramas de funciones multivaluadas, el comportamiento de singularidades aisladas, entre otras propiedades. Debido a las características de GeoGebra en cuanto a los colores dinámicos, es posible implementar en el software el método de dominio coloreado para visualizar y estudiar funciones complejas, lo cual se explica en detalle en el presente artículo.Palabras claves: funciones complejas, método de dominio coloreado, colores dinámicos. RESUMOExistem vários métodos para visualizar funções complexas, como plotar seus componentes reais e imaginários separadamente, mapear ou transformar uma região, o método de superfície analítica e o método de domínio colorido. Este último é um dos métodos mais recentes e aproveita certas características da cor e seu processamento digital. A ideia básica é usar cores e brilho ou sombras como dimensões adicionais e, para visualizar números complexos, é usada uma função real que associa uma cor específica a cada número complexo. O plano complexo pode então ser visualizado como uma paleta de cores construída a partir do esquema HSV (de Matiz, Saturação, Valor - Matiz, Saturação, Valor). Como resultado, o método do domínio colorido permite visualizar zeros e pólos de funções, ramificações de funções com múltiplos valores, o comportamento de singularidades isoladas, entre outras propriedades. Devido às características do GeoGebra em termos de cores dinâmicas, é possível implementar o método do domínio colorido para visualizar e estudar funções complexas, o que é explicado em detalhes neste artigo.Palavras-chave: funções complexas, método de domínio colorido, cores dinâmicas ABSTRACTThere are various methods to visualize complex functions, such as plotting their real and imaginary components separately, mapping or transforming a region, the analytical landscapes method and the domain coloring method. The latter is one of the most recent methods and takes advantage of certain characteristics of color and its digital processing. The basic idea is to use colors and brightness or shadows as additional dimensions and to visualize complex numbers a real function is used that associates a specific color to each complex number. The complex plane can then be visualized as a color palette constructed from the HSV scheme (from Hue, Saturation, Value - Hue, Saturation, Value). As a result, the domain coloring method allows to visualize zeroes and poles of functions, branches of multivalued functions, the behavior of isolated singularities, among others properties. Due to the characteristics of GeoGebra in terms of dynamic colors, it is possible to implement the colored domain method to visualize and study complex functions, which is explained in detail in this article.Keywords:  function; complex; domain; coloring.


2001 ◽  
Vol 25 (7) ◽  
pp. 429-450 ◽  
Author(s):  
Silviu Olariu

Two distinct systems of commutative complex numbers inndimensions are described, of polar and planar types. Exponential forms ofn-complex numbers are given in each case, which depend on geometric variables. Azimuthal angles, which are cyclic variables, appear in these forms at the exponent, and this leads to the concept of residue for path integrals ofn-complex functions. The exponential function of ann-complex number is expanded in terms of functions called in this paper cosexponential functions, which are generalizations tondimensions of the circular and hyperbolic sine and cosine functions. The factorization ofn-complex polynomials is discussed.


Author(s):  
Sri Rejeki Dwi Putranti

Many engineering problems can be solved by methods involving complex numbers and complex functions. In the definitions below we will prove the relationship between trigonometric functions and hyperbolic functions, where the hyperbolic function is an extension of the trigonometric function. Keywords: trigonometric functions; hyperbolic functions


1970 ◽  
Vol 54 (388) ◽  
pp. 186
Author(s):  
W. L. Ferrar ◽  
F. M. Hawkins ◽  
J. Q. Hawkins

2010 ◽  
Vol 18 (4) ◽  
pp. 201-206
Author(s):  
Keiichi Miyajima ◽  
Takahiro Kato ◽  
Yasunari Shidama

Riemann Integral of Functions R into C In this article, we define the Riemann Integral on functions R into C and proof the linearity of this operator. Especially, the Riemann integral of complex functions is constituted by the redefinition about the Riemann sum of complex numbers. Our method refers to the [19].


Sign in / Sign up

Export Citation Format

Share Document