ON WELL-POSEDNESS OF ABSTRACT HYPERBOLIC PROBLEMS IN FUNCTION SPACES

Author(s):  
A. ASHYRALYEV ◽  
M. MARTINEZ ◽  
J. PASTOR ◽  
S. PISKAREV
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Stefan Balint ◽  
Agneta M. Balint

This paper considers the stability of constant solutions to the 1D Euler equation. The idea is to investigate the effect of different function spaces on the well-posedness and stability of the null solution of the 1D linearized Euler equations. It is shown that the mathematical tools and results depend on the meaning of the concepts “perturbation,” “small perturbation,” “solution of the propagation problem,” and “small solution, that is, solution close to zero,” which are specific for each function space.


2018 ◽  
Vol 62 (4) ◽  
pp. 715-726
Author(s):  
Shangquan Bu ◽  
Gang Cai

AbstractIn this paper, by using operator-valued ${\dot{C}}^{\unicode[STIX]{x1D6FC}}$-Fourier multiplier results on vector-valued Hölder continuous function spaces, we give a characterization of the $C^{\unicode[STIX]{x1D6FC}}$-well-posedness for the third order differential equations $au^{\prime \prime \prime }(t)+u^{\prime \prime }(t)=Au(t)+Bu^{\prime }(t)+f(t)$, ($t\in \mathbb{R}$), where $A,B$ are closed linear operators on a Banach space $X$ such that $D(A)\subset D(B)$, $a\in \mathbb{C}$ and $0<\unicode[STIX]{x1D6FC}<1$.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Jin-soo Hwang

We consider a strongly damped quasilinear membrane equation with Dirichlet boundary condition. The goal is to prove the well-posedness of the equation in weak and strong senses. By setting suitable function spaces and making use of the properties of the quasilinear term in the equation, we have proved the fundamental results on existence, uniqueness, and continuous dependence on data including bilinear term of weak and strong solutions.


Sign in / Sign up

Export Citation Format

Share Document