compressible fluids
Recently Published Documents


TOTAL DOCUMENTS

507
(FIVE YEARS 56)

H-INDEX

39
(FIVE YEARS 4)

Author(s):  
A. T. Mackay ◽  
T. N. Phillips

AbstractA Taylor–Galerkin finite element time marching scheme is derived to numerically simulate the flow of a compressible and nonisothermal viscoelastic liquid between eccentrically rotating cylinders. Numerical approximations to the governing flow and constitutive equations are computed over a custom refined unstructured grid of piecewise linear Galerkin finite elements. An original extension to the DEVSS formulation for compressible fluids is introduced to stabilise solutions of the discrete problem. The predictions of two models: the extended White–Metzner and FENE-P-MP are presented. Comparisons between the torque and load bearing capacity predicted by both models are made over a range of viscoelastic parameters. The results highlight the significant and interacting effects of elasticity and compressibility on journal torque and resultant load, and the stability of the journal bearing system.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Arianna Passerini

AbstractWe show well-posedness for the equations describing a new model of slightly compressible fluids. This model was recently rigorously derived in Grandi and Passerini (Geophys Astrophys Fluid Dyn, 2020) from the full set of balance laws and falls in the category of anelastic Navier–Stokes fluids. In particular, we prove existence and uniqueness of global regular solutions in the two-dimensional case for initial data of arbitrary “size”, and for “small” data in three dimensions. We also show global stability of the rest state in the class of weak solutions.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Masanori Kameyama

AbstractIn this paper, we carried out a series of linear analyses on the onset of thermal convection of highly compressible fluids whose physical properties strongly vary in space in convecting vessels either of a three-dimensional spherical shell or a two-dimensional spherical annulus geometry. The variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with ten times the Earth’s mass, while the thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively. Our analysis showed that, for the cases with strong temperature dependence in viscosity and strong depth dependence in thermal conductivity, the critical Rayleigh number is on the order of 108–109, implying that the mantle convection of massive super-Earths is most likely to fall in the stagnant-lid regime very close to the critical condition, if the properties of their mantle materials are quite similar to the Earth’s. Our analysis also demonstrated that the structures of incipient flows of stagnant-lid convection in the presence of strong adiabatic compression are significantly affected by the depth dependence in thermal conductivity and the geometries of convecting vessels, through the changes in the static stability of thermal stratification of the reference state. When the increase in thermal conductivity with depth is sufficiently large, the thermal stratification can be greatly stabilized at depth, further inducing regions of insignificant fluid motions above the bottom hot boundaries in addition to the stagnant lids along the top cold surfaces. We can therefore speculate that the stagnant-lid convection in the mantles of massive super-Earths is accompanied by another motionless regions at the base of the mantles if the thermal conductivity strongly increases with depth (or pressure), even though their occurrence is hindered by the effects the spherical geometries of convecting vessels.


2021 ◽  
Vol 33 (8) ◽  
pp. 084102
Author(s):  
Thi Thai Le ◽  
Thorsten Koch

2021 ◽  
Author(s):  
Masanori Kameyama

Abstract In this paper we carried out a series of linear analysis on the onset of thermal convection of highly compressible fluids whose physical properties strongly vary in space in convecting vessels either of a three-dimensional spherical shell or a two-dimensional spherical annulus. The variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's mass, while the thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively. Our analysis showed that, for the cases with strong temperature-dependence in viscosity and strong depth-dependence in thermal conductivity, the critical Rayleigh number is on the order of 108 to 109, 15 implying that the mantle convection of massive super-Earths is most likely to fall in the stagnant-lid regime very close to the critical condition, if the properties of their mantle materials are quite similar to the Earth's. Our analysis also demonstrated that the structures of incipient ows of stagnant-lid convection in the presence of strong adiabatic compression are significantly affected by the depth-dependence in thermal conductivity and the geometries of convecting vessels, through the changes in the static stability of thermal stratification of the reference state. When the increase in thermal conductivity with depth is suffciently large, the thermal stratification can be greatly stabilised at depth, further inducing regions of insignificant fluid motions above the bottom hot boundaries in addition to the stagnant lids along the top cold surfaces. We can therefore speculate that the stagnant-lid convection in the mantles of massive super-Earths is accompanied by another motionless regions at the base of the mantles if the thermal conductivity strongly increases with depth (or pressure), even though their occurrence is hindered by the effects the spherical geometries of convecting vessels.


Sign in / Sign up

Export Citation Format

Share Document