AREA COVERAGE PROBLEMS IN WIRELESS SENSOR NETWORKS

Author(s):  
BANG WANG ◽  
CHENG FU ◽  
HOCK BENG LIM ◽  
MINGHUI LI ◽  
DI MA
2020 ◽  
pp. 1580-1600
Author(s):  
Subhendu Kumar Pani

A wireless sensor network may contain hundreds or even tens of thousands of inexpensive sensor devices that can communicate with their neighbors within a limited radio range. By relaying information on each other, they transmit signals to a command post anywhere within the network. Worldwide market for wireless sensor networks is rapidly growing due to a huge variety of applications it offers. In this chapter, we discuss application of computational intelligence techniques in wireless sensor networks on the coverage problem in general and area coverage in particular. After providing different types of coverage encountered in WSN, we present a possible classification of coverage algorithms. Then we dwell on area coverage which is widely studied due to its importance. We provide a survey of literature on area coverage and give an account of its state-of-the art and research directions.


Author(s):  
Subhendu Kumar Pani

A wireless sensor network may contain hundreds or even tens of thousands of inexpensive sensor devices that can communicate with their neighbors within a limited radio range. By relaying information on each other, they transmit signals to a command post anywhere within the network. Worldwide market for wireless sensor networks is rapidly growing due to a huge variety of applications it offers. In this chapter, we discuss application of computational intelligence techniques in wireless sensor networks on the coverage problem in general and area coverage in particular. After providing different types of coverage encountered in WSN, we present a possible classification of coverage algorithms. Then we dwell on area coverage which is widely studied due to its importance. We provide a survey of literature on area coverage and give an account of its state-of-the art and research directions.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2251
Author(s):  
Amir Masoud Rahmani ◽  
Saqib Ali ◽  
Mohammad Sadegh Yousefpoor ◽  
Efat Yousefpoor ◽  
Rizwan Ali Naqvi ◽  
...  

Coverage is a fundamental issue in wireless sensor networks (WSNs). It plays a important role in network efficiency and performance. When sensor nodes are randomly scattered in the network environment, an ON/OFF scheduling mechanism can be designed for these nodes to ensure network coverage and increase the network lifetime. In this paper, we propose an appropriate and optimal area coverage method. The proposed area coverage scheme includes four phases: (1) Calculating the overlap between the sensing ranges of sensor nodes in the network. In this phase, we present a novel, distributed, and efficient method based on the digital matrix so that each sensor node can estimate the overlap between its sensing range and other neighboring nodes. (2) Designing a fuzzy scheduling mechanism. In this phase, an ON/OFF scheduling mechanism is designed using fuzzy logic. In this fuzzy system, if a sensor node has a high energy level, a low distance to the base station, and a low overlap between its sensing range and other neighboring nodes, then this node will be in the ON state for more time. (3) Predicting the node replacement time. In this phase, we seek to provide a suitable method to estimate the death time of sensor nodes and prevent possible holes in the network, and thus the data transmission process is not disturbed. (4) Reconstructing and covering the holes created in the network. In this phase, the goal is to find the best replacement strategy of mobile nodes to maximize the coverage rate and minimize the number of mobile sensor nodes used for covering the hole. For this purpose, we apply the shuffled frog-leaping algorithm (SFLA) and propose an appropriate multi-objective fitness function. To evaluate the performance of the proposed scheme, we simulate it using NS2 simulator and compare our scheme with three methods, including CCM-RL, CCA, and PCLA. The simulation results show that our proposed scheme outperformed the other methods in terms of the average number of active sensor nodes, coverage rate, energy consumption, and network lifetime.


Sign in / Sign up

Export Citation Format

Share Document