coverage problem
Recently Published Documents


TOTAL DOCUMENTS

447
(FIVE YEARS 104)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Abdulaziz Saleh Alzahrani ◽  
Ahmad Al Hanbali

The fire station location is a critical decision to optimize the coverage level as measured in terms of the response time. This paper focuses on optimizing the coverage problem, especially in the fire protection field, with new model features to incorporate realistic business challenges such as location criticality and secondary coverage. We extend the deterministic Maximum Coverage Location Problem to account for Top Corporate Risk locations being covered by different fire stations as primary and secondary coverage. To deal with the response time uncertainty arising in practice, we propose a new binary linear problem based on the Maximum Expected Covering Location Problem. By exploiting the model structural characteristics, we prove that the model complexity can be substantially reduced to yield an efficient solution. In the numerical experiments, we use a real case study with five years of historical data. The optimization results of the models yield a priority ranking of the fire stations to open and show the value of incorporating the coverage uncertainty. Finally, we also compare our model with uncertainty with the standard scenario-based optimization to extend the numerical results.


2021 ◽  
Vol 11 (21) ◽  
pp. 10197
Author(s):  
Wenbo Zhu ◽  
Chia-Ling Huang ◽  
Wei-Chang Yeh ◽  
Yunzhi Jiang ◽  
Shi-Yi Tan

The wireless sensor network (WSN) plays an essential role in various practical smart applications, e.g., smart grids, smart factories, Internet of Things, and smart homes, etc. WSNs are comprised and embedded wireless smart sensors. With advanced developments in wireless sensor networks research, sensors have been rapidly used in various fields. In the meantime, the WSN performance depends on the coverage ratio of the sensors being used. However, the coverage of sensors generally relates to their cost, which usually has a limit. Hence, a new bi-tuning simplified swarm optimization (SSO) is proposed that is based on the SSO to solve such a budget-limited WSN sensing coverage problem to maximize the number of coverage areas to improve the performance of WSNs. The proposed bi-tuning SSO enhances SSO by integrating the novel concept to tune both the SSO parameters and SSO update mechanism simultaneously. The performance and applicability of the proposed bi-tuning SSO using seven different parameter settings are demonstrated through an experiment involving nine WSN tests ranging from 20, 100, to 300 sensors. The proposed bi-tuning SSO outperforms two state-of-the-art algorithms: genetic algorithm (GA) and particle swarm optimization (PSO), and can efficiently accomplish the goals of this work.


2021 ◽  
pp. 1-11
Author(s):  
Leila Ajam ◽  
Ali Nodehi ◽  
Hosein Mohamadi

Literature in recent years has introduced several studies conducted to solve the target coverage problem in wireless sensor networks (WSNs). Sensors are conventionally assumed as devices with only a single power level. However, real applications may involve sensors with multiple power levels (i.e., multiple sensing ranges each of which possesses a unique power consumption). Consequently, one of the key problems in WSNs is how to provide a full coverage on all targets distributed in a network containing sensors with multiple power levels and simultaneously prolong the network lifetime as much as possible. This problem is known as Maximum Network Lifetime With Adjustable Ranges (MNLAR) and its NP-completeness has been already proved. To solve this problem, we proposed an efficient hybrid algorithm containing Genetic Algorithm (GA) and Tabu Search (TS) aiming at constructing cover sets that consist of sensors with appropriate sensing ranges to provide a desirable coverage for all the targets in the network. In our hybrid model, GA as a robust global searching algorithm is used for exploration purposes, while TS with its already-proved local searching ability is utilized for exploitation purposes. As a result, the proposed algorithm is capable of creating a balance between intensification and diversification. To solve the MNLR problem in an efficient way, the proposed model was also enriched with an effective encoding method, genetic operators, and neighboring structure. In the present paper, different experiments were performed for the purpose of evaluating how the proposed algorithm performs the tasks defined. The results clearly confirmed the superiority of the proposed algorithm over the greedy-based algorithm and learning automata-based algorithm in terms of extending the network lifetime. Moreover, it was found that the use of multiple power levels altogether caused the extension of the network lifetime.


2021 ◽  
Author(s):  
Aline Eid ◽  
Jimmy G.D. Hester ◽  
Manos M. Tentzeris
Keyword(s):  

2021 ◽  
pp. 1-14
Author(s):  
Azam Qarehkhani ◽  
Mehdi Golsorkhtabaramiri ◽  
Hosein Mohamadi ◽  
Meisam Yadollahzadeh Tabari

Directional sensor networks (DSNs) are classified under wireless networks that are largely used to resolve the coverage problem. One of the challenges to DSNs is to provide coverage for all targets in the network and, at the same time, to maximize the lifetime of network. A solution to this problem is the adjustment of the sensors’ sensing ranges. In this approach, each sensor adjusts its own sensing range dynamically to sense the corresponding target(s) and decrease energy consumption as much as possible through forming the best cover sets possible. In the current study, a continuous learning automata-based method is proposed to form such cover sets. To assess the proposed algorithm’s performance, it was compared to the results obtained from a greedy algorithm and a learning automata algorithm. The obtained results demonstrated the superiority of the proposed algorithm regarding the maximization of the network lifetime.


Sign in / Sign up

Export Citation Format

Share Document