Evolving Support Vector Regression by Hybrid PSO and SA for Rainfall-Runoff Forecasting

Author(s):  
Jian-Sheng Wu
Author(s):  
Jan Adamowski

Abstract Using support vector regression to predict direct runoff, base flow and total flow in a mountainous watershed with limited data in Uttaranchal, India. In the ecologically sensitive Himalayan region, land transformations and utilization of natural resources have modified water flow patterns. To ascertain future sustainable water supply it is necessary to predict water flow from the watersheds as affected by rainfall and morphological parameters. Although such predictions may be made using available process- -based models, in mountainous and hilly areas it is extremely difficult to determine the numerous parameters needed to run such models, thus limiting their applicability. Artificial intelligence (AI) based models are a possible alternative in such circumstances. In this study an AI technique, support vector machines (SVM), was used for modeling the rainfall-runoff relationship from three hilly watersheds in the state of Uttaranchal, India. Different SVM models were developed to predict direct runoff, base flow, and total flow based on the daily rainfall, runoff, and morphological parameters collected from each watershed. The results confirm the potential of SVM models in the prediction of runoff, base flow, and total flow in hilly areas.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 191
Author(s):  
Shen Chiang ◽  
Chih-Hsin Chang ◽  
Wei-Bo Chen

To better understand the effect and constraint of different data lengths on the data-driven model training for the rainfall-runoff simulation, the support vector regression (SVR) approach was applied to the data-driven model as the core algorithm in the present study. Various features selection strategies and different data lengths were employed in the training phase of the model. The validated results of the SVR were compared with the rainfall-runoff simulation derived from a physically based hydrologic model, the Hydrologic Modeling System (HEC-HMS). The HEC-HMS was considered a conventional approach and was also calibrated with a dataset period identical to the SVR. Our results showed that the SVR and HEC-HMS models could be adopted for short and long periods of rainfall-runoff simulation. However, the SVR model estimated the rainfall-runoff relationship reasonably well even if the observational data of one year or one typhoon event was used. In contrast, the HEC-HMS model needed more parameter optimization and inference processes to achieve the same performance level as the SVR model. Overall, the SVR model was superior to the HEC-HMS model in the performance of the rainfall-runoff simulation.


2013 ◽  
Vol 15 (4) ◽  
pp. 1377-1390 ◽  
Author(s):  
Wen-chuan Wang ◽  
Dong-mei Xu ◽  
Kwok-wing Chau ◽  
Shouyu Chen

Rainfall-runoff simulation and prediction in watersheds is one of the most important tasks in water resources management. In this research, an adaptive data analysis methodology, ensemble empirical mode decomposition (EEMD), is presented for decomposing annual rainfall series in a rainfall-runoff model based on a support vector machine (SVM). In addition, the particle swarm optimization (PSO) is used to determine free parameters of SVM. The study data from a large size catchment of the Yellow River in China are used to illustrate the performance of the proposed model. In order to measure the forecasting capability of the model, an ordinary least-squares (OLS) regression and a typical three-layer feed-forward artificial neural network (ANN) are employed as the benchmark model. The performance of the models was tested using the root mean squared error (RMSE), the average absolute relative error (AARE), the coefficient of correlation (R) and Nash–Sutcliffe efficiency (NSE). The PSO–SVM–EEMD model improved ANN model forecasting (65.99%) and OLS regression (64.40%), and reduced RMSE (67.7%) and AARE (65.38%) values. Improvements of the forecasting results regarding the R and NSE are 8.43%, 18.89% and 182.7%, 164.2%, respectively. Consequently, the presented methodology in this research can enhance significantly rainfall-runoff forecasting at the studied station.


2016 ◽  
Vol 136 (12) ◽  
pp. 898-907 ◽  
Author(s):  
Joao Gari da Silva Fonseca Junior ◽  
Hideaki Ohtake ◽  
Takashi Oozeki ◽  
Kazuhiko Ogimoto

Sign in / Sign up

Export Citation Format

Share Document