Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 518 ◽  
Author(s):  
Pierre Hodara ◽  
Ioannis Papageorgiou

We aim to prove Poincaré inequalities for a class of pure jump Markov processes inspired by the model introduced by Galves and Löcherbach to describe the behavior of interacting brain neurons. In particular, we consider neurons with degenerate jumps, i.e., which lose their memory when they spike, while the probability of a spike depends on the actual position and thus the past of the whole neural system. The process studied by Galves and Löcherbach is a point process counting the spike events of the system and is therefore non-Markovian. In this work, we consider a process describing the membrane potential of each neuron that contains the relevant information of the past. This allows us to work in a Markovian framework.


1970 ◽  
Vol 7 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Thomas G. Kurtz

In a great variety of fields, e.g., biology, epidemic theory, physics, and chemistry, ordinary differential equations are used to give continuous deterministic models for dynamic processes which are actually discrete and random in their development. Perhaps the simplest example is the differential equation used to describe a number of processes including radioactive decay and population growth.


2010 ◽  
Vol 42 (3) ◽  
pp. 761-794 ◽  
Author(s):  
K. Pakdaman ◽  
M. Thieullen ◽  
G. Wainrib

In this paper we establish limit theorems for a class of stochastic hybrid systems (continuous deterministic dynamics coupled with jump Markov processes) in the fluid limit (small jumps at high frequency), thus extending known results for jump Markov processes. We prove a functional law of large numbers with exponential convergence speed, derive a diffusion approximation, and establish a functional central limit theorem. We apply these results to neuron models with stochastic ion channels, as the number of channels goes to infinity, estimating the convergence to the deterministic model. In terms of neural coding, we apply our central limit theorems to numerically estimate the impact of channel noise both on frequency and spike timing coding.


Sign in / Sign up

Export Citation Format

Share Document