Similar Construction Method of Solution for Solving the Spherical Seepage Model of Fractal Composite Reservoir with Double-porosity

Author(s):  
Wen-wen Xia ◽  
Shun-chu Li ◽  
Ming Hu ◽  
Dong-dong Gui
2009 ◽  
Vol 129 (5) ◽  
pp. 715-716
Author(s):  
Shoichi Minami ◽  
Satoshi Morii ◽  
Suo Lian ◽  
Shunji Kawamoto

2018 ◽  
Author(s):  
Pierre Marcasuzaa ◽  
Samuel Pearson ◽  
Karell Bosson ◽  
Laurence Pessoni ◽  
Jean-Charles Dupin ◽  
...  

A hierarchically structured platform was obtained from spontaneous self-assembly of a poly(styrene)-<i>b</i>-poly(vinylbenzylchloride) (PS-<i>b</i>-PVBC) block copolymer (BCP) during breath figure (BF) templating. The BF process using a water/ethanol atmosphere gave a unique double porosity in which hexagonally arranged micron-sized pores were encircled by a secondary population of smaller, nano-sized pores. A third level of structuration was simultaneously introduced between the pores by directed BCP self-assembly to form out-of-the-plane nano-cylinders, offering very rapid bottom-up access to a film with unprecedented triple structure which could be used as a reactive platform for introducing further surface functionality. The surface nano-domains of VBC were exploited as reactive nano-patterns for site-specific chemical functionalization by firstly substituting the exposed chlorine moiety with azide, then “clicking” an alkyne by copper (I) catalyzed azide-alkyne Huisgen cycloaddition (CuAAC). Successful chemical modification was verified by NMR spectroscopy, FTIR spectroscopy, and XPS, with retention of the micro- and nanostructuration confirmed by SEM and AFM respectively. Protonation of the cyclotriazole surface groups triggered a switch in macroscopic behavior from a Cassie-Baxter state to a Wenzel state, highlighting the possibility of producing responsive surfaces with hierarchical structure.


Sign in / Sign up

Export Citation Format

Share Document