OPTIMIZATION OF MILLING PARAMETERS BASED ON MACHINING DEFORMATION ANALYSIS OF RULED SURFACE BLADES

Author(s):  
Mao-Yue Li ◽  
Lei Li ◽  
Hai-Bin Yu ◽  
Jin-Gang Huang
2020 ◽  
Vol 14 ◽  
Author(s):  
Song Yang ◽  
Tie Yin ◽  
Feiyue Wang

Background: Thin-walled parts of aluminum alloy are easy to occur machining deformation duo to the characteristics of thin wall, low rigidity, and complex structure. Objective: To reduce and control the machining deformation, it is necessary to select reasonable machining parameters. Method: The influence of milling parameters on the milling forces, milling temperature, and machining deformation was analyzed through the established model based on ABAQUS. Then, the corresponding empirical formula was obtained by MATLAB, and parameters optimization was carried out as well. Besides, a lot of patents on machining thin-walled parts were studied. Results: The results shown that the prediction error of milling forces is about 15%, and 20% of milling temperature. In this case, the optimized milling parameters are as follows: ap=1 mm, ae=0.1 mm, n=12 000 r/min, and f=400 mm/min. It is of great significance to reduce the machining deformation and improve the machining quality of thin-walled parts.


2021 ◽  
Author(s):  
Xiaoming Huang ◽  
Xiaoliang Liu ◽  
Jiaxing Li ◽  
Yongbin Chen ◽  
Dechen Wei ◽  
...  

Abstract In the process of machining aircraft monolithic components, the initial stress in the blank will cause machining deformation. Based on the energy method, an analytical mathematical model of machining deformation is presented in this paper. The key point is to transform the energy in the removed material into the deformation energy of the part after machining. The initial residual stress of 7050-T7451 aluminum alloy blank and single frame part are used as investigated case in the analytical model. For layer by layer machining, the deformation evolution is closely related to the tensile or compressive properties of the initial stress of removed material. Combined with the change of neutral axis position, The machining deformation is calculated by theoretical model. Then, FEM simulation is carried out to analyze the influence of stiffening ribs on machining deformation utilizing the semi-analytical model of equivalent bending stiffness. Furthermore, experiments are set up to verify the validity of the theory and FEM data. The results indicate that the deformation results of the experiment are consistent with that of theory and FEM model. Deformation is determined by energy of removed material. This paper provides a novel theoretical approaches for the further investigation of this issue.


2021 ◽  
Author(s):  
Xiaoming Huang ◽  
Xiaoliang Liu ◽  
Weitao Sun ◽  
Jiaxing Li ◽  
Yongbin Chen ◽  
...  

Abstract In the process of machining aircraft monolithic components, the initial stress in the blank will cause machining deformation. Based on the energy method, an analytical mathematical model of machining deformation is presented in this paper. The key point is to transform the energy in the removed material into the deformation energy of the part after machining. The initial residual stress of 7050-T7451 aluminum alloy blank and single frame part are used as investigated case in the analytical model. For layer by layer machining, the deformation evolution is closely related to the tensile or compressive properties of the initial stress of removed material. Combined with the change of neutral axis position, The machining deformation is calculated by theoretical model. Then, FEM simulation is carried out to analyze the influence of stiffening ribs on machining deformation utilizing the semi-analytical model of equivalent bending stiffness. Furthermore, experiments are set up to verify the validity of the theory and FEM data. The results indicate that the deformation results of the experiment are consistent with that of theory and FEM model. Deformation is determined by energy of removed material. This paper provides a novel theoretical approaches for the further investigation of this issue.


2006 ◽  
Vol 315-316 ◽  
pp. 174-179 ◽  
Author(s):  
H. Guo ◽  
Dun Wen Zuo ◽  
S.H. Wang ◽  
Min Wang ◽  
L.L. Xu ◽  
...  

Many thin-walled structure components widely used in aero industries not only have complex structure and large size, but also need high machining accuracy. However, because of their poor rigidity, it is easy to bring machining deformation caused by the existence of the initial residual stresses, the fixing stresses, cutting forces and cutting heat. The difficulty in ensuring their machining accuracy becomes a big problem, so that how to effectively predict and control the machining deformation has become an important subject in the development and production of our national defense weapons. This paper established a 3-D Finite element model with consideration of milling forces, clamping forces and initial residual stress field. By using this model, machining deformation of thin-walled frame shape workpieces has been computed. The simulated results are compared with experimental data, and the correctness of the simulation is verified. The study is helpful to the prediction and the control of machining deformation for thin-walled parts.


Strain ◽  
1993 ◽  
Vol 29 (4) ◽  
pp. 139-140
Author(s):  
Xie Huimin ◽  
Pan Shaochuan

1993 ◽  
Vol 42 (475) ◽  
pp. 359-363
Author(s):  
Mitomo HIRAI ◽  
Tsuneo HIRAI ◽  
Tsutao KATAYAMA ◽  
Takeshi ISHIKAWA

Sign in / Sign up

Export Citation Format

Share Document