Research on Finite Element Simulation and Parameters Optimization of Milling 7050-T7451 Aluminum Alloy Thin-walled Parts

2020 ◽  
Vol 14 ◽  
Author(s):  
Song Yang ◽  
Tie Yin ◽  
Feiyue Wang

Background: Thin-walled parts of aluminum alloy are easy to occur machining deformation duo to the characteristics of thin wall, low rigidity, and complex structure. Objective: To reduce and control the machining deformation, it is necessary to select reasonable machining parameters. Method: The influence of milling parameters on the milling forces, milling temperature, and machining deformation was analyzed through the established model based on ABAQUS. Then, the corresponding empirical formula was obtained by MATLAB, and parameters optimization was carried out as well. Besides, a lot of patents on machining thin-walled parts were studied. Results: The results shown that the prediction error of milling forces is about 15%, and 20% of milling temperature. In this case, the optimized milling parameters are as follows: ap=1 mm, ae=0.1 mm, n=12 000 r/min, and f=400 mm/min. It is of great significance to reduce the machining deformation and improve the machining quality of thin-walled parts.

2010 ◽  
Vol 44-47 ◽  
pp. 2842-2846
Author(s):  
Xiao Hui Jiang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
He Long Wu

In this paper, with the milling processing of aluminum-alloy thin-walled parts as the research object, using software AdvantEdge, a milling simulation model is developed to study milling parameters affect on the cutting force, heat and catenation. It is found that by adjusting the ratio of milling parameters, the effects of cutting forces and heat can turn to the favorable direction of workpiece. In addition, we combine numerical simulation with experiments to explore the law of optimization of process parameters. It is discovered that the method of improving the milling speed and reducing the cutting depth properly can ensure the milling efficiency and the quality of the workpiece, providing a scientific insight for achieving high-quality, low-cost and efficient thin-walled parts manufacturing.


2006 ◽  
Vol 315-316 ◽  
pp. 174-179 ◽  
Author(s):  
H. Guo ◽  
Dun Wen Zuo ◽  
S.H. Wang ◽  
Min Wang ◽  
L.L. Xu ◽  
...  

Many thin-walled structure components widely used in aero industries not only have complex structure and large size, but also need high machining accuracy. However, because of their poor rigidity, it is easy to bring machining deformation caused by the existence of the initial residual stresses, the fixing stresses, cutting forces and cutting heat. The difficulty in ensuring their machining accuracy becomes a big problem, so that how to effectively predict and control the machining deformation has become an important subject in the development and production of our national defense weapons. This paper established a 3-D Finite element model with consideration of milling forces, clamping forces and initial residual stress field. By using this model, machining deformation of thin-walled frame shape workpieces has been computed. The simulated results are compared with experimental data, and the correctness of the simulation is verified. The study is helpful to the prediction and the control of machining deformation for thin-walled parts.


2011 ◽  
Vol 189-193 ◽  
pp. 2482-2485
Author(s):  
Xin Hua Mao ◽  
Zhi Gang Hu ◽  
Ting Ting Huang

Because of its low stiffness and intensity structural features, thin-walled parts affected by milling force, easily produce deformation and vibration among processing. In this paper, by optimizing milling parameters, it can be realized to control the size of the dynamic milling force and the milling state. Then it reaches the purpose to decrease workpiece deformation, and makes processing conditions maintain a stable. It not only reduces deformation caused by the vibration, but also makes thin-walled parts errors meet the tolerance requirements.


2021 ◽  
Vol 1033 ◽  
pp. 24-30
Author(s):  
Yi Dan Zeng ◽  
Li Tong He ◽  
Jin Zhang

One of the main reasons for the scrap of cast thin-wall frame aluminum alloy castings is deformation and cracking. It is an effective method for solving the problem by predicting the distribution of casting stress, clarifying the size of the deformation and the location of the crack, and taking necessary measures in the process. This paper uses the ProCAST software to simulate the thermal stress coupling of A356 thin-walled frame castings, analyzes the influence of pouring temperature, pouring speed and mold temperature on the stress field distribution of castings, predicts the hot cracking trend and deformation, and optimizes Casting process..


2014 ◽  
Vol 575 ◽  
pp. 437-441
Author(s):  
Yi Shu Hao ◽  
Guo Qing Tang ◽  
Meng Zhang

In order to solve the problem of size guarantee related to thin-walled structure in traditional milling parameter selection, specific aluminum alloy frame part contains curved surface and thin-walled structure is studied. Numerical analysis is used in milling parameter selection method. Machining errors are calculated and checked based on milling force analysis. The milling process is simulated using finite element software. And aluminum alloy frame part processing is optimized from the angle of milling parameters according to the simulation results. Optimized milling parameters scheme is acquired, the results show that both machining precision and efficiency of the frame part are improved.


2021 ◽  
Author(s):  
Yang Yang ◽  
Chen Su ◽  
Hongsen Wang ◽  
Yuan Wang ◽  
Leshi Shu

Abstract Aluminum alloy has high strength and light weight. It is widely used for aircraft fuselage, propellers and other parts which work under high load conditions. High-quality parts made of aluminum alloy processed by computerized numerical control (CNC) machine often have the characteristics of high cost in their processing. In order to achieve high surface quality and control processing costs, this article takes the workpiece surface hardness and machining energy consumption as targets. Intelligent optimization algorithm is used to find the optimal combination of milling parameters to obtain ideal targets. CNC milling parameter optimization is a multi-parameter, multi-objective, multi-constraint, discrete nonlinear optimization problem which is difficult to solve. For this challenge, an improved NSGA-II is presented, named enhanced population diversity NSGA-II (EPD-NSGA-II). EPD-NSGA-II is improved with the normal distribution crossover, adaptive mutation operator of differential evolution, crowding calculation method considering variance and modified elite retention strategy to achieve enhanced population diversity. 12 test functions are chosen for experimentation to verify the performance of the EPD-NSGA-II. The values of three evaluation indicators show that the proposed approach has good distribution and convergence performance. Finally, the approach is applied in the milling parameters optimization of 7050 aluminum alloy to get the optimal solutions. Results indicate that the EPD-NSGA-II is effective in optimizing the problem of milling parameters.


2014 ◽  
Vol 543-547 ◽  
pp. 370-373
Author(s):  
Chao Qun Shen ◽  
Li Jiao ◽  
Zhao Hui Dong ◽  
Lei Zhang ◽  
Song Peng

A method to predict the milling deformation of the cylinders deck face was carried out, and FEA technology was used in the research about machining deformation of the thin-walled part. In this work, a simple thin-walled part was taken as an example. The milling deflection of the workpiece had been predicted by establishing a FEA model. Finally, FEA results were verified with milling experimental data, which provided a theoretical basis for technology improvement of cylinders manufacture process.


2010 ◽  
Vol 431-432 ◽  
pp. 543-546
Author(s):  
Xiao Hui Zhang ◽  
Guo Giang Guo ◽  
Ming Chen ◽  
Bin Rong ◽  
Bing Han ◽  
...  

Aluminum alloy, as a kind of large-scaled structures, have been widely used in modern aerospace industry. In order to reduce its machining deformation, cutting parameter optimization is absolutely necessarily. By fuzzy synthetic evaluation, cutting parameters are optimized based on factors: surface roughness, residual stress, radial milling force and milling temperature. By maximal grade of membership rule, optimized values are obtained by different two methods. And by BP network with Bayesian regularization method the corresponding milling parameters are obtained too.


Sign in / Sign up

Export Citation Format

Share Document