scholarly journals Cayley Automatic Representations of Wreath Products

2016 ◽  
Vol 27 (02) ◽  
pp. 147-159 ◽  
Author(s):  
Dmitry Berdinsky ◽  
Bakhadyr Khoussainov

We construct the representations of Cayley graphs of wreath products using finite automata, pushdown automata and nested stack automata. These representations are in accordance with the notion of Cayley automatic groups introduced by Kharlampovich, Khoussainov and Miasnikov and its extensions introduced by Elder and Taback. We obtain the upper and lower bounds for a length of an element of a wreath product in terms of the representations constructed.

2014 ◽  
Vol 25 (07) ◽  
pp. 877-896 ◽  
Author(s):  
MARTIN KUTRIB ◽  
ANDREAS MALCHER ◽  
MATTHIAS WENDLANDT

We investigate the descriptional complexity of deterministic one-way multi-head finite automata accepting unary languages. It is known that in this case the languages accepted are regular. Thus, we study the increase of the number of states when an n-state k-head finite automaton is simulated by a classical (one-head) deterministic or nondeterministic finite automaton. In the former case upper and lower bounds that are tight in the order of magnitude are shown. For the latter case we obtain an upper bound of O(n2k) and a lower bound of Ω(nk) states. We investigate also the costs for the conversion of one-head nondeterministic finite automata to deterministic k-head finite automata, that is, we trade nondeterminism for heads. In addition, we study how the conversion costs vary in the special case of finite and, in particular, of singleton unary lanuages. Finally, as an application of the simulation results, we show that decidability problems for unary deterministic k-head finite automata such as emptiness or equivalence are LOGSPACE-complete.


2008 ◽  
Vol 19 (04) ◽  
pp. 751-765 ◽  
Author(s):  
MARCO ALMEIDA ◽  
NELMA MOREIRA ◽  
ROGÉRIO REIS

We give a canonical representation for minimal acyclic deterministic finite automata (MADFA) with n states over an alphabet of k symbols. Using this normal form, we present a method for the exact generation of MADFAs. This method avoids a rejection phase that would be needed if a generation algorithm for a larger class of objects that contains the MADFAs were used. We give upper and lower bounds for MADFAs enumeration and some exact formulas for small values of n.


Author(s):  
DMITRY BERDINSKY ◽  
MURRAY ELDER ◽  
JENNIFER TABACK

Abstract We extend work of Berdinsky and Khoussainov [‘Cayley automatic representations of wreath products’, International Journal of Foundations of Computer Science27(2) (2016), 147–159] to show that being Cayley automatic is closed under taking the restricted wreath product with a virtually infinite cyclic group. This adds to the list of known examples of Cayley automatic groups.


2018 ◽  
Vol 29 (02) ◽  
pp. 251-270 ◽  
Author(s):  
Markus Holzer ◽  
Sebastian Jakobi ◽  
Martin Kutrib

We study reversible deterministic finite automata (REV-DFAs), that are partial deterministic finite automata whose transition function induces an injective mapping on the state set for every letter of the input alphabet. We give a structural characterization of regular languages that can be accepted by REV-DFAs. This characterization is based on the absence of a forbidden pattern in the (minimal) deterministic state graph. Again with a forbidden pattern approach, we also show that the minimality of REV-DFAs among all equivalent REV-DFAs can be decided. Both forbidden pattern characterizations give rise to [Formula: see text]-complete decision algorithms. In fact, our techniques allow us to construct the minimal REV-DFA for a given minimal DFA. These considerations lead to asymptotic upper and lower bounds on the conversion from DFAs to REV-DFAs. Thus, almost all problems that concern uniqueness and the size of minimal REV-DFAs are solved.


2017 ◽  
Vol 28 (05) ◽  
pp. 483-501 ◽  
Author(s):  
Aleksandrs Belovs ◽  
J. Andres Montoya ◽  
Abuzer Yakaryılmaz

It is one of the most famous open problems to determine the minimum amount of states required by a deterministic finite automaton to distinguish a pair of strings, which was stated by Christian Choffrut more than thirty years ago. We investigate the same question for different automata models and we obtain new upper and lower bounds for some of them including alternating, ultrametric, quantum, and affine finite automata.


2008 ◽  
Vol 19 (04) ◽  
pp. 813-826 ◽  
Author(s):  
REMCO LOOS ◽  
ANDREAS MALCHER ◽  
DETLEF WOTSCHKE

In this paper, the descriptional complexity of extended finite splicing systems is studied. These systems are known to generate exactly the class of regular languages. Upper and lower bounds are shown relating the size of these splicing systems, defined as the total length of the rules and the initial language of the system, to the size of their equivalent minimal nondeterministic finite automata (NFA). In addition, an accepting model of extended finite splicing systems is studied. Using this variant one can obtain systems which are more than polynomially more succinct than the equivalent NFA or generating extended finite splicing system.


2021 ◽  
Author(s):  
Martin Kutrib ◽  
Andreas Malcher ◽  
Christian Schneider

AbstractWe investigate finite automata whose state graphs are undirected. This means that for any transition from state p to q consuming some letter a from the input there exists a symmetric transition from state q to p consuming a letter a as well. So, the corresponding language families are subregular, and in particular in the deterministic case, subreversible. In detail, we study the operational descriptional complexity of deterministic and nondeterministic undirected finite automata. To this end, the different types of automata on alphabets with few letters are characterized. Then, the operational state complexity of the Boolean operations as well as the operations concatenation and iteration is investigated, where tight upper and lower bounds are derived for unary as well as arbitrary alphabets under the condition that the corresponding language classes are closed under the operation considered.


2006 ◽  
Vol 13 (13) ◽  
Author(s):  
Jirí Srba

We investigate the possibility of (bi)simulation-like preorder/equivalence checking on the class of visibly pushdown automata and its natural subclasses visibly BPA (Basic Process Algebra) and visibly one-counter automata. We describe generic methods for proving complexity upper and lower bounds for a number of studied preorders and equivalences like simulation, completed simulation, ready simulation, 2-nested simulation preorders/equivalences and bisimulation equivalence. Our main results are that all the mentioned equivalences and preorders are EXPTIME-complete on visibly pushdown automata, PSPACE-complete on visibly one-counter automata and P-complete on visibly BPA. Our PSPACE lower bound for visibly one-counter automata improves also the previously known DP-hardness results for ordinary one-counter automata and one-counter nets. Finally, we study regularity checking problems for visibly pushdown automata and show that they can be decided in polynomial time.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui Lei ◽  
Gou Hu ◽  
Zhi-Jie Cao ◽  
Ting-Song Du

Abstract The main aim of this paper is to establish some Fejér-type inequalities involving hypergeometric functions in terms of GA-s-convexity. For this purpose, we construct a Hadamard k-fractional identity related to geometrically symmetric mappings. Moreover, we give the upper and lower bounds for the weighted inequalities via products of two different mappings. Some applications of the presented results to special means are also provided.


Sign in / Sign up

Export Citation Format

Share Document