scholarly journals A PYRAMID-BASED BLOCK OF SKEWERS FOR PIXEL PURITY INDEX FOR ENDMEMBER EXTRACTION IN HYPERSPECTRAL IMAGERY

2008 ◽  
Vol 18 (02) ◽  
pp. 469-482 ◽  
Author(s):  
CHEIN-I CHANG ◽  
MINGKAI HSUEH ◽  
WEIMIN LIU ◽  
CHAO-CHENG WU ◽  
FARZEEN CHAUDHRY ◽  
...  

Pixel Purity Index (PPI) has been widely used for endmember extraction. Recently, an approach using blocks of skewers was proposed by Theiler et al., called blocks of skewers (BOS) method, to improve computation of the PPI. It utilizes a block of skewers to reduce number of calculations of dot products operated by the PPI on each skewers with all data sample vectors. Unfortunately, the BOS method also suffers from the same drawbacks that the PPI does in terms of several parameters which are needed to be determined a priori. Besides, it also has an additional parameter, block size, B needed to be determined where no guideline is provided of how to select this parameter. In this paper, the BOS method is also investigated. Most importantly, a new pyramid-based block design for the BOS method is also introduced as opposed to the cube-based block designed used by Theiler et al.'s BOS. One major advantage of our proposed pyramid-based BOS over Theiler et al.'s cube-design BOS is the hardware design for Field Programmable Gate Arrays (FPGAs) implementation.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2108
Author(s):  
Mohamed Yassine Allani ◽  
Jamel Riahi ◽  
Silvano Vergura ◽  
Abdelkader Mami

The development and optimization of a hybrid system composed of photovoltaic panels, wind turbines, converters, and batteries connected to the grid, is first presented. To generate the maximum power, two maximum power point tracker controllers based on fuzzy logic are required and a battery controller is used for the regulation of the DC voltage. When the power source varies, a high-voltage supply is incorporated (high gain DC-DC converter controlled by fuzzy logic) to boost the 24 V provided by the DC bus to the inverter voltage of about 400 V and to reduce energy losses to maximize the system performance. The inverter and the LCL filter allow for the integration of this hybrid system with AC loads and the grid. Moreover, a hardware solution for the field programmable gate arrays-based implementation of the controllers is proposed. The combination of these controllers was synthesized using the Integrated Synthesis Environment Design Suite software (Version: 14.7, City: Tunis, Country: Tunisia) and was successfully implemented on Field Programmable Gate Arrays Spartan 3E. The innovative design provides a suitable architecture based on power converters and control strategies that are dedicated to the proposed hybrid system to ensure system reliability. This implementation can provide a high level of flexibility that can facilitate the upgrade of a control system by simply updating or modifying the proposed algorithm running on the field programmable gate arrays board. The simulation results, using Matlab/Simulink (Version: 2016b, City: Tunis, Country: Tunisia, verify the efficiency of the proposed solution when the environmental conditions change. This study focused on the development and optimization of an electrical system control strategy to manage the produced energy and to coordinate the performance of the hybrid energy system. The paper proposes a combined photovoltaic and wind energy system, supported by a battery acting as an energy storage system. In addition, a bi-directional converter charges/discharges the battery, while a high-voltage gain converter connects them to the DC bus. The use of a battery is useful to compensate for the mismatch between the power demanded by the load and the power generated by the hybrid energy systems. The proposed field programmable gate arrays (FPGA)-based controllers ensure a fast time response by making control executable in real time.


Sign in / Sign up

Export Citation Format

Share Document