scholarly journals THE RELATIVE WEAK ASYMPTOTIC HOMOMORPHISM PROPERTY FOR INCLUSIONS OF FINITE VON NEUMANN ALGEBRAS

2011 ◽  
Vol 22 (07) ◽  
pp. 991-1011 ◽  
Author(s):  
JUNSHENG FANG ◽  
MINGCHU GAO ◽  
ROGER R. SMITH

A triple of finite von Neumann algebras B ⊆ N ⊆ M is said to have the relative weak asymptotic homomorphism property if there exists a net of unitary operators {uλ}λ∈Λ in B such that [Formula: see text] for all x,y ∈ M. We prove that a triple of finite von Neumann algebras B ⊆ N ⊆ M has the relative weak asymptotic homomorphism property if and only if N contains the set of all x ∈ M such that [Formula: see text] for a finite number of elements x1, …, xn in M. Such an x is called a one-sided quasi-normalizer of B, and the von Neumann algebra generated by all one-sided quasi-normalizers of B is called the one-sided quasi-normalizer algebra of B. We characterize one-sided quasi-normalizer algebras for inclusions of group von Neumann algebras and use this to show that one-sided quasi-normalizer algebras and quasi-normalizer algebras are not equal in general. We also give some applications to inclusions L(H) ⊆ L(G) arising from containments of groups. For example, when L(H) is a masa we determine the unitary normalizer algebra as the von Neumann algebra generated by the normalizers of H in G.

2008 ◽  
Vol 19 (04) ◽  
pp. 481-501 ◽  
Author(s):  
TETSUO HARADA ◽  
HIDEKI KOSAKI

Let τ be a faithful semi-finite normal trace on a semi-finite von Neumann algebra, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality states τ(f(a* xa)) ≤ τ(a* f(x)a) for a contraction a and a self-adjoint operator x. Under certain strict convexity assumption on f(t), we will study when this inequality reduces to the equality.


2002 ◽  
Vol 132 (1) ◽  
pp. 137-154 ◽  
Author(s):  
NARCISSE RANDRIANANTOANINA

Let [Mscr ] be a von Neumann algebra (not necessarily semi-finite). We provide a generalization of the classical Kadec–Pełczyński subsequence decomposition of bounded sequences in Lp[0, 1] to the case of the Haagerup Lp-spaces (1 [les ] p < 1 ). In particular, we prove that if { φn}∞n=1 is a bounded sequence in the predual [Mscr ]∗ of [Mscr ], then there exist a subsequence {φnk}∞k=1 of {φn}∞n=1, a decomposition φnk = yk+zk such that {yk, k [ges ] 1} is relatively weakly compact and the support projections supp(zk) ↓k 0 (or similarly mutually disjoint). As an application, we prove that every non-reflexive subspace of the dual of any given C*-algebra (or Jordan triples) contains asymptotically isometric copies of [lscr ]1 and therefore fails the fixed point property for non-expansive mappings. These generalize earlier results for the case of preduals of semi-finite von Neumann algebras.


2013 ◽  
Vol 56 (1) ◽  
pp. 9-12 ◽  
Author(s):  
SHAVKAT AYUPOV ◽  
FARKHAD ARZIKULOV

AbstractIn the present paper we prove that every 2-local derivation on a semi-finite von Neumann algebra is a derivation.


2001 ◽  
Vol 12 (06) ◽  
pp. 743-750 ◽  
Author(s):  
TERESA BATES ◽  
THIERRY GIORDANO

In this note we prove that if G is a countable discrete group, then every uniformly bounded cocycle from a standard Borel G-space into a finite Von Neumann algebra is cohomologous to a unitary cocycle. This generalizes results of both F. H. Vasilescu and L. Zsidó and R. J. Zimmer.


2013 ◽  
Vol 24 (09) ◽  
pp. 1350075
Author(s):  
HIDEKI KOSAKI

Let [Formula: see text] be a semi-finite von Neumann algebra equipped with a faithful semi-finite normal trace τ, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality in our previous work states τ(f(a*xa)) ≤ τ(a*f(x)a) (as long as the both sides are well-defined) for a contraction [Formula: see text] and a semi-bounded τ-measurable operator x. Validity of this inequality for (not necessarily semi-bounded) self-adjoint τ-measurable operators is investigated.


2011 ◽  
Vol 22 (07) ◽  
pp. 947-979 ◽  
Author(s):  
JAN M. CAMERON

For an inclusion N ⊆ M of II1 factors, we study the group of normalizers [Formula: see text] and the von Neumann algebra it generates. We first show that [Formula: see text] imposes a certain "discrete" structure on the generated von Neumann algebra. By analyzing the bimodule structure of certain subalgebras of [Formula: see text], this leads to a "Galois-type" theorem for normalizers, in which we find a description of the subalgebras of [Formula: see text] in terms of a unique countable subgroup of [Formula: see text]. Implications for inclusions B ⊆ M arising from the crossed product, group von Neumann algebra, and tensor product constructions will also be addressed. Our work leads to a construction of new examples of norming subalgebras in finite von Neumann algebras: If N ⊆ M is a regular inclusion of II1 factors, then N norms M.


2017 ◽  
Vol 121 (1) ◽  
pp. 75 ◽  
Author(s):  
Rui Okayasu ◽  
Narutaka Ozawa ◽  
Reiji Tomatsu

The Haagerup approximation property (HAP) is defined for finite von Neumann algebras in such a way that the group von Neumann algebra of a discrete group has the HAP if and only if the group itself has the Haagerup property. The HAP has been studied extensively for finite von Neumann algebras and it was recently generalized to arbitrary von Neumann algebras by Caspers-Skalski and Okayasu-Tomatsu. One of the motivations behind the generalization is the fact that quantum group von Neumann algebras are often infinite even though the Haagerup property has been defined successfully for locally compact quantum groups by Daws-Fima-Skalski-White. In this paper, we fill this gap by proving that the von Neumann algebra of a locally compact quantum group with the Haagerup property has the HAP. This is new even for genuine locally compact groups.


2018 ◽  
Vol 61 (2) ◽  
pp. 236-239
Author(s):  
Remi Boutonnet ◽  
Jean Roydor

AbstractWe give a short proof of a result of T. Bates and T. Giordano stating that any uniformly bounded Borel cocycle into a finite von Neumann algebra is cohomologous to a unitary cocycle. We also point out a separability issue in their proof. Our approach is based on the existence of a non-positive curvature metric on the positive cone of a finite von Neumann algebra.


2002 ◽  
Vol 65 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Cui Jianlian ◽  
Hou Jinchuan

In this paper, we give some characterisations of homomorphisms on von Neumann algebras by linear preservers. We prove that a bounded linear surjective map from a von Neumann algebra onto another is zero-product preserving if and only if it is a homomorphism multiplied by an invertible element in the centre of the image algebra. By introducing the notion of tr-rank of the elements in finite von Neumann algebras, we show that a unital linear map from a linear subspace ℳ of a finite von Neumann algebra ℛ into ℛ can be extended to an algebraic homomorphism from the subalgebra generated by ℳ into ℛ; and a unital self-adjoint linear map from a finite von Neumann algebra onto itself is completely tr-rank preserving if and only if it is a spatial *-automorphism.


1977 ◽  
Vol 81 (2) ◽  
pp. 233-236 ◽  
Author(s):  
A. Guyan Robertson

We investigate here the question of uniqueness of best approximation to operators in von Neumann algebras by elements of certain linear subspaces. Recall that a linear subspace V of a Banach space X is called a Chebyshev subspace if each vector in X has a unique best approximation by vectors in V. Our first main result characterizes the one-dimensional Chebyshev subspaces of a von Neumann algebra. This may be regarded as a generalization of a result of Stampfli [(4), theorem 2, corollary] which states that the scalar multiples of the identity operator form a Chebyshev subspace. Alternatively it may be regarded as a generalization of the commutative situation in which a continuous complex-valued function f on a compact Hausdorff space X spans a Chebyshev subspace of C(X) if and only if f does not vanish on X [(3), p. 215]. Our second main result is that a finite dimensional * subalgebra, of dimension > 1, of an infinite dimensional von Neumann algebra cannot be a Chebyshev subspace. This imposes limits to further generalization of Stampfli's result.


Sign in / Sign up

Export Citation Format

Share Document